Reg. No.

Question Paper Code : 57562

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fifth Semester

Mechanical Engineering

ME 6502 – HEAT AND MASS TRANSFER

(Regulations 2013)

Time : Three Hours

Maximum: 100 Marks

Answer ALL questions. PART – A $(10 \times 2 = 20 \text{ Marks})$

- 1. What are various modes of heat transfer ? Give examples.
- 2. What is lumped capacitance analysis?
- 3. Differentiate free and forced convection.
- 4. Differentiate Hydrodynamic and thermal boundary layer.
- 5. What is black body radiation?
- 6. Define Emissive power and monochromatic emissivity.
- 7. What are the assumptions made in Nusselt theory of condensation ?
- 8. What is fouling and how does it affect the rate of heat transfer?
- 9. Define Fick's law.
- Diffusivity of ammonia in air at temperature 30 °C and pressure 1 atm. is
 0.228 cm²/sec. Find the diffusivity of ammonia in cm²/sec in air at temperature 50°C and pressure 1.1 atm.

$PART - B (5 \times 16 = 80 Marks)$

11. (a) Write short notes on :

- (i) Heat transfer with extended surfaces
- (ii) critical radius of insulation
- (iii) A flat furnace wall is constructed of 114 mm layer of sil-o-gel brick with a thermal conductivity of 0.138 W/m°C backed by a 229 mm layer of common brick of conductivity 1.38 W/m°C. The temperature of inner face of the wall is 760°C and that of the outer face is 76.6°C. (a) What is the heat loss through composite wall ? (b) What is the temperature of interface between refractory brick and common brick ? (10)

OR

- (b) (i) A plane wall 10 cm thick generates heat at the rate of 4× 10⁴ W/m³, when electric current is passed through it. The conductive heat transfer coefficient between each phase of wall and ambient air is 50W/m²°C. The thermal conductivity of wall is 15 W/ m °C (a) Derive the temperature profile for given slab, (b) Determine the surface temperature, (c) The maximum temperature in the wall. (10)
 - (ii) What is the significance of Heisler charts in transient heat conduction? (6)
- 12. (a) (i) Explain about three-layer model for internal convection in tubular flow. (8)
 - (ii) A fluid of kinematic viscosity equal to 15×10^{-6} m²/s flows with an average velocity of 10 m/s in a square duct of 0.08×0.08 m cross section. What is the Reynolds number based on the hydraulic diameter ? Is the flow laminar or turbulent ? What is the Nusselt number if the flow is fully developed and the Prandtl Number is 0.7.

2

(8)

(3)

(3)

- (b) (i) Explain about thermal boundary layer flow past a flat plate.
 - (ii) Consider flow of air at atmospheric pressure and 300 K parallel to a flat plate 2 m long. The velocity of air far away from the plate is 10 m/sec. The plate surface is held at a constant temperature of 400 K. Determine the heat transfer coefficient at the trailing edge of the plate using the Colburn analogy ? Data : Properties at film temperature are: Density 0.995 kg/m³, kinematic viscosity 20.92×10^{-6} m²/s, thermal conductivity 0.03 W m⁻¹ K⁻¹ . Prandtl number 0.7 (10)
- Hot water enters a counter flow heat exchanger at 95°C. This hot water is (a) (i) used to heat a cool stream of water from 8 to 40° C. The flow rate of the cool water is 1 .2 kg/s, and that of the hot water is 2.7 kg/s. The overall heat-transfer coefficient is 850 W/m²°C. What is the area of the heat exchanger and its effectiveness? (10)
 - Name and brief the different types of heat exchangers. (ii)

OR

- A hot stream is cooled from 120°C to 30°C while the cold stream (b) (i) temperature changes from 20 to 60°C. Find out the LMTD for both counter current and co-current phenomenon. Justify how counter current is effective than co-current? (6)
 - What is flow boiling and pool boiling ? Describe how heat transfer (ii) coefficient varies in regimes of pool boiling. (10)
- Determine an expression for heat transfer rate by using electrical analogy (a) (i) (i) without any shield between 2 parallel plates (ii) with shield in between 2 parallel plates. (16)

3

5756

(6)

111111111

- (b) (i) What is view factor and shape factor?
 - (ii) State laws of blackbody radiation?
 - (iii) Two large parallel plates are at temperatures $T_1 = 500$ K and $T_2 = 300$ K. Their emissivities are $\varepsilon_1 = 0.85$ and $\varepsilon_2 = 0.90$. What is the radiant flux between the plates ?

15. (a)

(i)

- Derive an expression for mass flux in steady state molecular diffusion (a) A through non diffusing B.
 - (b) Equimolar Counter Diffusion
- (ii) NH₃ gas (A) diffuses through N₂ (B) under steady state condition with non-diffusing N₂. The total pressure is 101.325 k Pa and temperature is 298 K. The diffusion thickness is 0.15 m the partial pressure of NH₃ at one point is 1.5×10^4 Pa and at the other point is 5×10^3 Pa. The D_{AB} for mixture at 1 atm and 298 K is 2.3×10^{-5} m² /sec. (a) Calculate flux of NH₃. (A through non diffusing B). Calculate flux for equimolal counter diffusion.

OR

- (b) (i) Write a note on convective mass transfer coefficients for liquids and gases.
 - (ii) Give a brief description on heat, momentum and mass transfer analogies.

(5)

(6)

(8)

(8)

4