Reg. No. \square

Question Paper Code : 57576

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Sixth Semester
Mechanical Engineering
ME 6603 - FINITE ELEMENT ANALYSIS
(Common to Mechanical and Automation Engineering and Manufacturing Engineering)
(Regulations 2013)
Time : Three Hours
Maximum : $\mathbf{1 0 0}$ Marks

Answer ALL questions.
 PART - A ($10 \times 2=\mathbf{2 0}$ Marks)

1. What are the methods generally associated with the finite element analysis ?
2. If a displacement field in x direction is given by $u=2 x^{2}+4 y^{2}+6 x y$. Determine the strain in x direction.
3. Write down the expression of governing equation for free axial vibration of rod and transverse vibration of beam.
4. What is the stationary property of total potential energy?
5. Define path line and streamline.
6. Write a displacement function equation for CST element.
7. Write down the stress-strain relationship matrix for an axisymmetric triangular element.
8. What are the types of shell element?
9. What is the purpose of isoparametric elements ?
10. What is the difference between natural coordinates and local coordinates ?

$$
\text { PART }- \text { B }(5 \times 16=80 \text { Marks })
$$

11. (a) The following differential equation is available for a physical phenomenon.

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-10 x^{2}=5 ; 0 \leq x \leq 1 \tag{16}
\end{equation*}
$$

The boundary conditions are $: y(0)=0$

$$
y(1)=0
$$

Find an approximate solution of the above differential equation by using Galerkin's method of weighted residuals and also compare with exact solution.

OR
(b) A beam AB of span ' l ' simply supported at ends and carrying a concentrated load W at the centre C as shown in fig.l. Determine the deflection at midspan by using Rayleigh-Ritz method and compare with exact solution.

Figure 1
12. (a) Derive the shape functions for One-Dimensional Quadratic Bar element.
OR
(b) A steel bar of length 800 mm is subjected to an axial load of 3 kN as shown in fig. 2. Find the nodal displacements of the bar, and load vectors.

Figure 2
13. (a) Calculate the element stiffness matrix and the temperature force vector for the plane stress element shown in fig. 3. The element experiences a $20^{\circ} \mathrm{C}$ increase in temperature. Assume coefficient of thermal expansion is $6 \times 10^{-6} \mathrm{C}$. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{v}=0.25, \mathrm{t}=5 \mathrm{~mm}$.

Figure 3
OR
(b) Derive the shape function for the constant strain triangular element.
14. (a) The nodal co-ordinates for an axisymmetric triangular element are given in figure 4. Evaluate strain-Displacement matrix for that element.

Figure 4

OR

(b) Calculate the element stiffness matrix for the axisymmetric triangular element shown in Fig 5. The element experiences a $15^{\circ} \mathrm{C}$ increase in temperature. The coordinates are in mm . Take $\alpha=10 \times 10^{-6} /{ }^{\circ} \mathrm{C}, \mathrm{E}=2 \times 105 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{v}=0.25$.

Figure 5
15. (a) Derive the shape functions for 4 -noded rectangular element by using natural coordinate system.

OR

(b) Evaluate the Cartesian coordinate of the point P which has local coordinates $\varepsilon=0.6$ and $\eta=0.8$ as shown in fig. 6 .

Figure 6

