must stop the take-up spool at a predetermined amount of resistors (100). A worker on the floor will then cut the resistor strip and place it in the kit. The circuit should operate as follows:

- (i) A start/stop pushbutton station is used to turn the spool motor drive on and off manually
- (ii) A through-beam sensor counts the resistors as the pass by.
- (iii) A counter preset for 100 (the amount of resistors in each kit) will automatically stop the take-up spool when the accumulated count reaches 100.
- (iv) A second counter is provided to count the grand total used.
- (v) Manual reset buttons are provided for each counter

Spool motor drive

Through beam sensor

Figure. 16 (b)

50888

	 	 		1	 	Γ	
Reg. No.:							
0	 	 			 		

Question Paper Code: 50888

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2023.

Sixth/Seventh Semester

Mechanical Engineering

ME 8791 — MECHATRONICS

(Common to Manufacturing Engineering/Mechanical Engineering (Sandwich)/Mechanical and Automation Engineering/Production Engineering)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- . Is 3D printer a mechatronics product? Justify your answer.
- 2. What is meant by LVDT? Mention its uses.
- 3. Tabulate the difference between microprocessor and microcontroller?
- 1. Draw the structure of port 1 pin in 8051 microcontroller.
- 5. What are the operating modes of port A of 8255?
- Mention the need of keyboard interfacing in 8255 PPI.
- 7. What are some common examples of mnemonics used in PLC programming?
- 3. "PLCs are the most preferred controller for industrial automation". Justify your answer.
- Write down the applications of stepper motors.
- 10. How does engine timing, controlled in the mechatronic system?

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) Explain with a neat sketch, the working principle of different sensors/transducers used for measuring "Displacement" and "Temperature" quantities.

Or

- (b) (i) Explain in detail the concepts of Mechatronics approach with a neat diagram (10)
 - (ii) Mention the need for Mechatronics system. (3)
- 12. (a) Draw the functional block diagram of 8051 microcontroller and explain the functions of each block.

Or

- (b) (i) Draw the timing diagram for the instruction MOV A, B and calculate the time required to execute the instruction using 8085 microprocessor. (7)
 - (ii) Briefly explain the addressing modes of 8051 microcontroller with an example. (6)
- 13. (a) Explain the architecture of 8255 programmable peripheral interface and show how to configure P_A as input. P_B as output in MODE 1 when connected in memory mapped mode.

Or

- (b) With schematic, explain the role of 8255 in I/O interfacing. Design interface logic to read the status of keys connected to Port A and display in LEDs connected to Port B when connected in Mode 0. The ports are I/O mapped with addresses 90 H, 91 H, 92 H and 93 H for PA, PB, Pc and control register respectively.
- 14. (a) Explain the architecture of PLC with a neat block diagram.

Or

- (b) (i) Explain the operation of PLC with its scan cycle.
 - (ii) Draw a PLC logic diagram to turn ON/OFF the chuck clamping mechanism of a CNC machine using a single footswitch. (6)
- 15. (a) Explain the purpose of the following mechatronic system and recommend the appropriate sensor and actuator to carry out the specified task.

Pick and place robot – purpose: pick and place robots are used in the manufacturing industry for tasks such as assembling, packaging, sorting and palletizing.

Or

- (b) With a suitable case study discuss the purpose of the following mechatronic system and recommend the appropriate sensor and actuator to carry out the specified task.
 - Engine management system purpose : to optimize the performance, efficiency and emissions of the engine.

PART C — $(1 \times 15 = 15 \text{ marks})$

- 16. (a) Write a PLC program to implement the process illustrated in Figure 16. (a) The sequence of operation is to be as follows:
 - (i) Normally open start and normally closed stop pushbuttons are used to start and stop the process.
 - (ii) When the start button is pressed, solenoid A energizes to start filling the tank.
 - (iii) As the tank fills, the empty level sensor switch closes.
 - (iv) When the tank is full, the full level sensor switch closes.
 - (v) Solenoid A is de-energized.
 - (vi) The motor starts automatically and runs for 3 min to mix the liquid.
 - (vii) When the motor stops, solenoid B is energized to empty the tank.
 - (viii) When the tank is completely empty, the empty sensor switch opens to deenergize solenoid B.

Figure. 16 (a)

Or

(b) Write a program to implement the process illustrated in Figure 16 (b). A company that makes electronic assembly kits needs a counter to count and control the number of resistors placed into each kit. The controller

(7)

50888

3