Question Paper Code : X 60372

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 Third Semester Computer Science Engineering CS 2201/CS 33/10144 CS 302/080230007 – DATA STRUCTURES (Regulations 2008/2010)

Time : Three Hours

Maximum : 100 Marks

Answer ALL questions

PART – A

(10×2=20 Marks)

- 1. What are the advantages of linked list over arrays ?
- 2. List the applications of stack.
- 3. Write the algorithm for pre-order traversal.
- 4. What are threaded binary trees ? Give its advantages.
- 5. What is a heap?
- 6. List any two applications of binary heap.
- 7. Define the approach Union-By-Size.
- 8. State the advantages of collision resolution strategies.
- 9. Define critical path.
- 10. What is weakly connected graph?

X 60)37	72		
			PART – B (5×16=8	80 Marks)
11.	a)	i) ii)	Explain the operations of queue with C function. Explain the array implementation of stacks.	(8) (8)
			(OR)	
	b)	Ex	xplain the cursor implementations of linked list.	(16)
12.	a)	W	rite a C program to visit the binary tree using various tree traversal	ls. (16)
			(OR)	
	b)	i)	Simulate a dictionary consisting of terminologies and their meanings (Key/Value pairs) with suitable search operations using binary search	tree. (10)
		ii)	Explain Huffman coding with a suitable example.	(6)
13.	a)	Sh of	how how to implement the merge operation on splay trees so that a seq f n-1 Merges starting from n single-element trees takes O(n log2 n) t	uence ime. (16)
			(OR)	
	b)	In he	nplement Fibonacci heaps and compare their performance with bina eaps when used in Dijkstra's algorithm.	ry (16)
14.	a)	St di	tate the dynamic equivalence problem. With a procedure and an exa iscuss the dynamic equivalence problem.	ample (16)
			(OR)	
	b)	W ha	<i>W</i> ith a procedure and a relevant example discuss separate chaining in ashing.	n (16)
15.	a)	W	rite procedure to perform topological sort and explain.	(16)

(OR)

b) Construct minimum spanning tree for the following graph using Prim's and (16) Kruskal's algorithm.

