ANNA UNIVERSITY COIMBATORE

B.E. / B.TECH. DEGREE EXAMINATIONS : MAY / JUNE 2010

REGULATIONS : 2007
THIRD SEMESTER

070230007 - DATA STRUCTURES

(COMMON TO ECE / CSE / IT)

TIME : 3 Hours
PART - A

ANSWER ALL QUESTIONS

How efficiency of algorithm can be increased?
Define time complexity and space complexity.
Discuss on worst case and, average case behavior of an algorithm?
What is order notation?
Differentiate doubly and circularly linked list.
Write the algorithm for balancing symbols.
Convert the given infix to postfix ($\left.j^{\star} \mathrm{k}\right)+(\mathrm{x}+\mathrm{y})$.
How the enqueue and dequeue operations are performed in queue
Give the applications of priority queues.
Define depth of a node in a tree. Give example.
Draw the expression tree for the given postfix expression using stack $A B^{*} C+$

What is collision in hashing?
Differentiate between linear probing and quadratic probing
What is the average depth of all nodes in an equally likely tree?
Write a note on comparison based sorting
What is meant by quick sort?
List the advantage of Poly phase Merge
What do you mean by Undirected Graph?

Define cycle.

Explain the principle of topological sort.
PART - B

ANSWER ANY FIVE QUESTIONS

Describe top down design method in the process of program dievelopment

Explain the following
a) Divide and conquer algorithms
b) Brute force algorithms
23. Write a ' C ' program for array implementation of list $A D T$.
24. Define binary search tree. Write the routines for inserting and deleting an element in binary search tree with suitable example.
25. Write the steps and routine for the Inorder ,Preorder and Postorder traversal with example
26. a) Write the advantages and disadvantages for all the internal sorting methods.
b) Write the principles of all types of internal sorting
27. a) Perform insertion sort for the given list of numbers
$25,37,18,82,55,64,78$
b) Perform bubble sort for the given list of numbers $56,91,35,72,48,68$
28. State the principle of Dijkstra's algorithm. Write the routines for finding the shortest path in a graph

[^0]
[^0]: *****THE END*****

