| Reg. No. : | | | | |] | | | | | | |----------------|---|----|-----|----------------|-----|----|---|---|---|--| | Question Paper | C | | a • | <u>.</u>
52 | 8! | 58 |] | - | | | | question ruper | | ou | | · · | , T | | 1 | : | - | | ## B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019. Third/Fifth/Eighth Semester Computer Science and Engineering CS 6302 — DATABASE MANAGEMENT SYSTEMS (Common to Mechanical and Automation Engineering/Mechatronics Engineering/Information Technology) (Regulation 2013) (Also common to PTCS 6302 – Database Management Systems for B.E. (Part-Time) - Second Semester – Computer Science and Engineering – Regulation 2014) Time: Three hours Maximum: 100 marks Answer ALL questions. PART A — $(10 \times 2 = 20 \text{ marks})$ - 1. What is a primary key? Give example. - 2. Define denormalization. - B. What is data definition language? - 4. Outline the use of commit and rollback. - 6. Name the properties that must be satisfied by a transaction. - 6. Outline the need for concurrency control. - 7. State the difference between B tree and B+ tree indexing. - 8. Define a data mart. - 9. What is cryptography? - 10. What is persistence in object oriented databases? ## PART B — $(5 \times 13 = 65 \text{ marks})$ | 1. | (a) | Explain select, project, Cartesian product and equality join in relational algebra with an example. (13) | |------------|-----|--| | | • | \mathbf{Or} | | | (b) | Consider a relation $R(A,B) \cdot R$ is in first normal form. Justify R is in second normal form, third normal form and BCNF. (13) | | 2. | (a) | Consider the following relations: | | | | EMPLOYEE (ENO, NAME, DATE_BORN GENDER, | | | | DATE_OF_JOINING, DESIGNATION, BASIC_PAY, DNO) | | | | DEPARTMENT (DNO, DNAME) | | | • | The primary key is underlined. Write SQL queries to perform the following: | | | , | (i) Display the employee number, name, department number and department name of all employees. (3) | | | | (ii) List the details of employees who earn less than the average basic pay of all employees. (4) | | · / | | (iii) List the department number and number of employees in each department. (4) | | | | (iv) List the details of employees who work for DNO = 'CSE'. (2) Or | | | (b) | Outline the steps in query processing with a diagram and an example.(13) | | 13. | (a) | (i) Explain time stamp based concurrency control algorithm with an example. (6) | | | | (ii) What is dead lock? Explain the four conditions for dead lock with an example. (7) | | | | | | | (b) | Outline the various problems that occur due to concurrent transactions. | | | | Also, outline the two phase locking protocol used for concurrency control with an example. | | 14. | (a) | (i) Outline static hashing and dynamic hashing with an example. (8) | | | | (ii) Distinguish between primary index and secondary index. Give example. (5) | | | | Or the large state of the | | | (b) | Pretest as outline of the following | | | | (i) Distributed database management systems. (4) | | - | | (ii) Spatial databases. (5) | | - | | (iii) Data warehousing. (4) | - 15. (a) (i) What is database access control? Compare the processes of discretionary and mandatory access control mechanisms. (8) - (ii) Outline the structure of an XML document with an example.)r (b) What is an object oriented database management system? Outline the characteristics of an object oriented database management system. (13) ## PART C — $(1 \times 15 = 15 \text{ marks})$ - 6. (a) Consider the following case study describing the academic functioning of a college: - A college has many departments. - A department would have many students as well as employs many faculty members - A student can register into various courses; similarly a course can be registered by many students - A student lives in a single hostel but a hostel accommodates many students - A department offers many courses but a particular course is offerred by a particular department - A faculty teaches many courses. A course is taught by many faculties. Model a E-R diagram for the above scenario. (15) Or (b) Outline the steps in the Apriori algorithm for mining association rules with an example. (15)