

Reg. No. :							

Question Paper Code: 50384

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017 Third/Fifth/Sixth Semester

Computer Science and Engineering CS6303 – COMPUTER ARCHITECTURE

Common to: Electronics and Communication Engineering, Electronics and Instrumentation Engineering, Instrumentation and Control Engineering, Robotics and Automation Engineering, Information Technology (Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. What are components of a computer system?
- 2. What are the addressing modes?
- 3. Subtract $(11011)_2 (10011)_2$ using 2's complement. 4. Devide $(1001010)_2 \div (1000)_2$.
- 5. Mention the various types of pipelining.
- 6. Mention the various phase in executing an instruction.
- 7. Define strong scaling and weak scaling
- 8. Difference between Fine-grained multithreading and Coarse-grained multithreading.
- 9. What is virtual memory?
- 10. How many total bits are required for a direct-mapped cache with 16 KB of data and 4-word blocks, assuming a 32-bit address?

PART - B

 $(5\times13=65 \text{ Marks})$

- 11. a) Explain various instruction formats and illustrate the same with an example. (13) (OR)
 - b) Explain with an example about the operations and Operands of the Computer (13)Hardware?

12.	. a)	Illustrate the division algorithm with an example.	(13)
		(OR)	
	b)	i) Add the numbers $(0.5)_{10}$ and $(0.4375)_{10}$ using the floating point addition.	(6½)
		ii) Multiply the numbers $(0.5)_{10}$ and $(0.4375)_{10}$ using the floating point multiplication.	(6½)
13.	a)	Explain in detail the operation of the data path. (OR)	(13)
	b)	Explain the pipeline hazard in detail.	(13)
14.	a)	Explain with diagrammatic illustration Flynn's classification. (OR)	(13)
- 1	L۱	taga ta mining a kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kabupatèn Kab	
		Describe Simultaneous Multithreading (SMT) with an example.	(13)
15.	a)	Explain in detail about the memory technologies.	(13)
. 1	de.		
	b)	What is cache memory? How to improve cache performance? Discuss.	(13)
		PART – C (1×15=15 Ma	rks)
16.	a)	i) Suppose you want to achieve a speed-up of 90 times faster with 100 processors. What percentage of the original computation can be sequential?	(8)
		ii) Suppose you want to perform two sums: one is a sum of 10 scalar variables and one is a matrix sum of a pair of two-dimensional arrays, with dimensions 10 by 10. For now let's assume only the matrix sum is parallelizable; we'll see soon how to parallelize scalar sums. What speed-up do you get with 10 versus 40 processors? Next, calculate the speed-ups assuming the matrices	
		grow to 20 by 20.	(7)
		(OR)	
Turk	b)	Assume the miss rate of an instruction cache is 2% and the miss rate of the data cache is 4%. If a processor has a CPI of 2 without any memory stalls and the miss penalty is 100 cycles for all misses, determine how much faster a processor	
	• •	would run with a perfect cache that never missed. Assume the frequency of all loads and stores is 36%.	

and the second of the second o