Jacks Michigan All Stranger and Barrier and All Artists and All Artists tion of the property MRC is given any traperty to the contract of the property of 另一点。如果我**父亲**的我就是你有看到这一个女子不是 | 1881 1 Shitt Bail a 1310 1844 614 1 | | |---|--| | | | | | | |
 | |
 | | | | |------------|---|---|------|--|------|---|--|------| | Reg. No. : | | | | | | , | | Ay a | | | 4 | 1 | | | | | | | ## Question Paper Code: 50385 ## B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017 Third/Fourth Semester Computer Science and Engineering CS6304 - ANALOG AND DIGITAL COMMUNICATION Common to: Biomedical Engineering/Information Technology (Regulations 2013) Time: Three Hours Maximum: 100 Marks ## Answer ALL questions ## PART – A $(10\times2=20 \text{ Marks})$ - 1. An amplifier operating over the frequency range of 455 to 460 KHz has a 200 k Ω input resistor. What is the RMS noise voltage at the input to this amplifier if the ambient temperature is 17°C? - 2. Find the modulating frequency and maximum deviation of the PM wave represented by $v(t) = 12 \sin (6 + 10^8 t + 5 \cos 1250 t)$. - 3. Draw the FSK signal for the binary message 1011001. - 4. Define bandwidth efficiency. - 5. List out the standards organization for data communication. - 6. Define coding efficiency of a PCM system. - 7. Calculate the entropy of four possible messages {Q1, Q2, Q3, Q4} which is transmitted with probabilities {1/8, 3/8, 3/8, 1/8}. - 8. What is the principle advantage of sequential decoding of convolution code? - 9. Differentiate GSM over CDMA. - 10. What is Bluetooth technology? And mention its application. | | | | PART – B | ks) | |-----|----|------|---|------------| | 11. | a) |) i) | Derive the expression for the instantaneous voltage of AM wave. | (7) | | | | ii) |) For an AM DSBFC transmitter with an unmodulated carrier power Pc = 10 that is modulated simultaneously by three modulating signals with coefficie of modulation m1 = 0.2, m2 = 0.4 and m3 = 0.5, determine: 1) Total coefficient of modulation 2) Upper and lower sideband power 3) Total transmitted power. | | | | | | (OR) | (0) | | | | ٠ | | | | | b) | i) | Draw the block diagram of Armstrong indirect FM transmitter and describe its operation. | (9) | | | | ii) | Discuss the advantages and disadvantages of angle modulation. | (4) | | 12. | a) | i) | A BPSK modulator with a carrier frequency of 70 MHz and an input bit rate of 10 Mbps, determine the following: 1) maximum and minimum upper and lower side frequencies 2) minimum Nyquist bandwidth and 3) Baud rate. | (6) | | | | ii) | With a block diagram explain the working of coherent binary FSK transmitter and receiver. | (7) | | | | | (OR) | | | | b) | 1) | Determine the baud, minimum bandwidth and bandwidth efficiency for an 8-PSK system operating with an information bit rate of 24 kbps. | (6) | | | | ii) | Draw the block diagram of 8-QAM transmitter and explain its working. | (7) | | 13. | a) | i) | Describe the following data communications codes: Baudot, ASCII and EBCDIC. | (6) | | | | ii) | Explain the generation of PCM signal with a block diagram. | (7) | | | | | | | | | b) | i) | Explain the working of a two station data communication circuit with a block diagram. | (7) | | | | ii) | Describe the generation and demodulation of PPM signal with necessary waveforms | (6) | | 14. | a) | Five source messages are probable to appear as $m1 = 0.4$, $m2 = 0.15$, $m3 = 0.15$ $m4 = 0.15$, and $m5 = 0.15$. Determine the coding efficiency for | , | |-----|----|--|---------------| | | | 1) Shannon-Fano coding | | | | | 2) Huffman coding | (13) | | | | (OR) | | | | b) | i) Derive the expression for mutual information and channel capacity. | (7) | | | | ii) What are the types of error control coding? Describe the working of viter decoding algorithm. | 6) | | 15. | a) | i) Briefly describe the advanced mobile telephone system. | (6) | | | Í | ii) Discuss in detail about the architecture of GSM with necessary diagram. | (7) | | | | (OR) | | | | b) | i) Describe the concept of frequency reuse, channel assignment and hand-off in a cellular system. | n (7) | | | | ii) Briefly discuss about the different multiple access schemes. | (6) | | | | | | | | | PART – C (1×15=15 Ma | arks) | | 16. | a) | i) The first stage of a two-stage amplifier has a voltage gain of 10, a 600Ω inpures istor, a 1600Ω equivalent noise resistance and a $27k\Omega$ output resistor. For the second stage, these values are $25.81k\Omega$, $10k\Omega$ and $1M\Omega$ respectively Calculate the equivalent input noise resistance of this two stage amplifier | t
:.
'. | | 16. | a) | i) The first stage of a two-stage amplifier has a voltage gain of 10, a 600Ω inpures istor, a 1600Ω equivalent noise resistance and a 27kΩ output resistor. For the second stage, these values are 25,81kΩ, 10kΩ and 1MΩ respectively. Calculate the equivalent input noise resistance of this two stage amplifier. ii) Write short notes on: 1) Data communications hardware. | t
. (5) | | 16. | a) | i) The first stage of a two-stage amplifier has a voltage gain of 10, a 600Ω inpures istor, a 1600Ω equivalent noise resistance and a $27k\Omega$ output resistor. For the second stage, these values are $25.81k\Omega$, $10k\Omega$ and $1M\Omega$ respectively. Calculate the equivalent input noise resistance of this two stage amplifier. ii) Write short notes on: | t
:.
'. | | 16. | | i) The first stage of a two-stage amplifier has a voltage gain of 10, a 600Ω inpures in a 1600Ω equivalent noise resistance and a 27kΩ output resistor. For the second stage, these values are 25,81kΩ, 10kΩ and 1MΩ respectively Calculate the equivalent input noise resistance of this two stage amplifier. ii) Write short notes on: Data communications hardware Serial and parallel interface. | t | | 16. | | i) The first stage of a two-stage amplifier has a voltage gain of 10, a 600Ω inpuresistor, a 1600Ω equivalent noise resistance and a 27kΩ output resistor. For the second stage, these values are 25,81kΩ, 10kΩ and 1MΩ respectively Calculate the equivalent input noise resistance of this two stage amplifier. ii) Write short notes on: Data communications hardware Serial and parallel interface. (OR) i) Draw the block diagram of CDMA encoder and decoder and briefly explain. | t |