Reg. No. :			i	 	<u> </u>	Γ.	Γ	<u> </u>	<u> </u>
	<u></u>						l		ĺ

(N)

Question Paper Code: 40905

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2018

Fourth/Fifth/Sixth Semester Computer Science and Engineering CS 6401 – OPERATING SYSTEMS

(Common to: Electronics and Communication Engineering/Electronics and Instrumentation Engineering/Instrumentation and Control Engineering/Medical Electronics/Information Technology)

(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

(10×2=20 Marks)

- 1. What is the difference between trap and interrupt?
- 2. Mention the purpose of system calls.
- 3. What are the benefits of synchronous and asynchronous communication?
- 4. Give an programming example in which multithreading does not provide better performance than a single-threaded solutions.
- 5. Define external fragmentation.
- 6. What are the counting based page replacement algorithm?
- 7. State the typical bad-sector transactions.
- 8. What is the advantage of bit vector approach in free space management?
- 9. List the advantages and disadvantage of writing an operating system in high-level language such as C.
- 10. What is handle? How does a process obtain a handle?

PART – B

(5×13=65 Marks)

11. a) State the operating system structure. Describe the operating-system operations in detail. Justify the reason why the lack of a hardware-supported dual mode can cause serious shortcoming in an operating system?

(OR)

- b) i) Give reason why caches are useful. What problems do they solve? What problems do they cause? If a cache can be made as large as the device for which it is caching why not make it that large and eliminate the device? (8)
 - ii) Describe the major activities of operating system with regards to file management.
- 12. a) Describe the difference among short-term, medium-term and long-term scheduling with suitable example.

- b) Explain the differences in the degree to which the following scheduling algorithms discriminate in favor of short processes:
 - i) RR
 - ii) Multilevel feedback queues.
- 13. a) Explain why sharing a reentrant module is easier when segmentation is used than when pure paging is used with example.

- b) Discuss situation under which the most frequently used page replacement algorithm generates fewer page faults than the least recently used pagereplacement algorithm. Also discuss under which circumstances the opposite holds.
- 14. a) What are the various disk space allocation methods. Explain any two in detail.

- b) State and explain the FCFS, SSTF and SCAN disk scheduling with examples.
- 15. a) i) Under what circumstance would an user process request an operation that results in the allocation of a demand-zero memory region.
 - ii) Describe an useful application of the no-access page facility provided in Window XP.

- (OR) b) i) What optimization were used to minimize the discrepancy between CPU and I/O speeds on early computer systems.
 - ii) What manages cache in Windows XP? How is cache managed?

PART - C

-3-

(1×15=15 Marks)

- 16. a) Consider a system consisting of 'm' resources of the same type being shared by 'n' processes. Resource can be requested and released by processes only one at a time. Show that the system is deadlock free if the following two conditions
 - i) The maximum need of each process is between 1 and m resources.
 - ii) The sum of all maximum needs is less than m + n.

b) Consider the following set of processes, with the length of the CPU burst given in milliseconds:

Process	Burst Time	Priority
P	10	3
	1	1
	2	3
P	1	4
$\frac{P_4}{P_4}$	5	2
P_{5}		<u> </u>

The process are assumed to have arrived in the order P_1 , P_2 , P_3 , P_4 , P_5 all at

- i) Draw Gantt charts that illustrate the execution of these processes using the scheduling algorithms FCFS (smaller priority number implies higher priority) and RR (quantum = 1).
- ii) What is the waiting time of each process for each of the scheduling algorithms?