Reg. No. \square

Question Paper Code : 51379

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fourth Semester

Computer Science and Engineering

CS 2251/CS 41/CS 1251/080230013/10144 CS 402 - DESIGN AND ANALYSIS OF ALGORITHMS
(Regulations 2008/2010)
(Common to PRCS 2251/10144 CS 402 - Design and Analysis of Algorithms for
B.E. (Part-Time) Third Semester - Computer Science and Engineering Regulations 2009/2010)

Time : Three Hours
Maximum : 100 Marks

> Answer ALL questions.
> PART $-\mathbf{A}(10 \times 2=20 \mathrm{Marks})$

1. What is average case analysis?
2. Define program proving and program verification.
3. What is the draw back of greedy algorithm ?
4. What is the time complexity of binary search ?
5. State Principle of optimality.
6. What is $0 / 1$ knapsack problem ?
7. Differentiate live and dead nodes.
8. What is a Hamiltonian cycle ?
9. Distinguish between BFS and DFS.
10. An NP - hard problem can be solved in deterministic polynomial time, how ?

PART - B ($\mathbf{5} \times 16=80$ marks $)$

11. (a) Explain the Towers of Hanoi problem and solve it using recursion.

OR

(b) (i) Solve the given recurrence relation.

$$
T(n)=\left\{\begin{array}{cc}
2 T(n / 2)+2 & n>2 \\
1 & n=2 \\
0 & n=1
\end{array}\right.
$$

(ii) Describe best, worst and average case analysis of linear search algorithm.
12. (a) (i) Trace maximum and minimum (using divide conquer) algorithm for the following set of numbers.
$20,35,18,8,14,41,3,39,-20$.
(ii) Write a pseudo code using divide and conquer technique for finding the position of the largest element in an array of N numbers.

OR
(b) (i) Sort the following set of elements using merge sort : 12, 24, 8, 71, 4, 23, 6, 89, 56.
(ii) Solve the given knapsack problem using greedy technique.
$\mathrm{n}=3, \mathrm{~m}=20,(\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3)=(25,24,15),(\mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3)=(18,15,10)$.
13. (a) (i) Explain the multistage graphs with an example.
(ii) Write notes on optimal binary search trees.

OR

(b) Consider the Travelling Salesperson instance defined by the following cost matrix.
$\left[\begin{array}{ccccc}\infty & 20 & 30 & 10 & 11 \\ 15 & \infty & 16 & 4 & 2 \\ 3 & 5 & \infty & 2 & 4 \\ 19 & 6 & 18 & \infty & 3 \\ 16 & 4 & 7 & 16 & \infty\end{array}\right]$

Draw the state space tree and show the reduced matrices corresponding to each of the node.
14. (a) Explain the algorithm for finding all m-colorings of a graph.

OR

(b) Write down and explain the procedure for tackling the 8-queens problem using a backtracking approach.
15. (a) For the following graph identify and explain the articulation points and draw the bi-connected components.

OR
(b) Write a complete LC branch-and-bound algorithm for the job sequencing with deadlines problem. Use the fixed tuple size formulation.

