2)35 Kg

| Reg. No. : |  |
|------------|--|
|------------|--|

Question Paper Code: 42383

## B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2018

Fifth Semester

Computer Science and Engineering CS 2303 – THEORY OF COMPUTATION

(Common to Information Technology)

(Regulations 2008)

(Also common to PTCS 2303 – Theory of Computation for B.E. (Part-Time) Fifth Semester – CSE – Regulations 2009)

Time: Three Hours

Maximum: 100 Marks

## Answer ALL questions

PART - A

 $(10\times2=20 \text{ Marks})$ 

- 1. Compare NFA and DFA.
- 2. Differentiate proof by contradiction and proof by contrapositive. Prove that with an example.
- 3. Define a regular expression for the language that consists of set of strings over {0, 1} such that the number of 0's odd.
- 4. Show that the language  $L = \{0^p \mid p \text{ is a prime number}\}\$  is not regular.
- 5. Check whether the following grammar ({S, A}, {0, 1}, P, S) where P is defined as follows is ambiguous

 $S \rightarrow 0 \mid 01S1 \mid 0A1$ 

 $A \rightarrow 1S \mid 0AA1$ .

- 6. Define push down automata.
- 7. Design a turing machine over {0, 1} to compute the exclusive or of strings "x" and "y" which is available on the tape separated by 'A'. Store the result in the tape.
- 8. Prove that complement of context free language is not context free.
- 9. If a language L is recursively enumerable but not recursive, comment on the recursive and recursively enumerable nature of its complement.
- 10. Define the diagonal language  $L_d$ .

(16)

PART - B

(5×16=80 Marks)

11. a) i) Construct a DFA equivalent to the following  $\in$  -NFA.

(10)

**(6)** 



ii) Prove that if L = L(A) for some  $\in$ -NFA A, then there is a DFA M such that

L = L(M).

(OR)

- b) i) Prove by structural induction that the number of left and right parenthesis are the same for an expression. (6)
  - ii) Construct a NFA for the language denoted by the expression (0\*1 + 1\*0) and prove that string 0001 belongs to the NFA and the string 111 doesn't belong to it. (10)
- 12. a) Explain equivalence and minimization of automata with example. (16)

(OR)

- b) Discuss the properties (Union, Intersection, Kleene Closure, Complement and Difference) of regular languages and explain with an example. (16)
- 13. a) i) Let G = (V, T, P, S) be a context free grammar. If the recursive inference procedure tells us that the terminal string "w" is in the language of the variable A then there is a parse tree with root A and yield "w".

  (8)
  - ii) Construct a context free grammar for the language.  $L = \{ww^R \mid w \text{ is in } (0+1)^*\}$ . (8)
  - b) i) Convert the following PDA defined, by  $(\{q_0, q_1\}, \{0, 1\} \{Z, X\}, \delta, q_0, Z, \Phi)$  to a CFG where  $\delta$  is defined as follows: (10)

$$\delta(q_0, 1, Z) = \{(q_0, XZ)\}, \qquad \delta(q_0, \varepsilon, Z) = \{(q_0, \epsilon)\}$$

$$\delta(\mathbf{q_0},\,\mathbf{1},\,\mathbf{X}) = \{(\mathbf{q_0},\,\mathbf{XX})\}, \qquad \delta(\mathbf{q_1},\!\mathbf{1},\,\mathbf{X}) = \{(\mathbf{q_1},\!\epsilon)\}$$

$$\delta(q_0, 0, X) = \{(q_1, X)\}, \qquad \delta(q_1, 0, Z) = \{(q_0, Z)\}$$

ii) Justify deterministic PDA is less powerful than non deterministic PDA. (6)

14. a) i) Prove that every grammar G will correspond to a language L(G) that is free of useless symbols, ∈-productions and unit production. (8)

ii) Convert the grammar ({S, A, B}, {a, b}, P, S) to Chomsky Normal form where P is defined as follows:

(8)

 $S \rightarrow AB$ 

 $A \rightarrow aAA \mid \in$ 

 $B \rightarrow bBB \mid \epsilon$ 

(OR)

b) i) Design a turing machine to find m.n where m.n = m - n if m > n

0, otherwise (8)

ii) Discuss the various Turing machine programming techniques. (8)

15. a) i) Prove that L<sub>u</sub> recursively enumerable bu not recursive. (10)

ii) Prove that  $L_d$  is not recursively enumerable and not recursive. (6)

(OR)

b) Prove that PCP is undecidable and show this with an example.

.