	11
(V)	• •
١	. \
5	5
. [

Reg. No. :	-						

Question Paper Code: 23384

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2018.

Fifth Semester

Computer Science and Engineering

CS 2303 — THEORY OF COMPUTATION

(Common to Seventh Semester Information Technology)

(Regulations 2008)

(Also common to PTCS 2303 — Theory of Computation for B.E. (Part – Time) Fifth Semester — CSE — Regulations 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Any set A, B, and C if $A \cap B = \phi$ and C B then $A \cap C = \phi$. Prove by contrapositive.
- 2. Prove for every n > 1 by mathematical induction $\sum_{i=1}^{n} i^{2} = n(n+1)(n+2)/6.$
- 3. State pumping lemma for regular languages.
- 4. Construct NFA equivalent to the regular expression: (0+1)01.
- 5. Specify the use of context free grammar.
- 6. Define parse tree with an example.
- 7. State the pumping lemma for CFLs.
- 8. What are the applications of Turing Machine?
- 9. What is meant by recursive enumerable language?
- 10. Define PCP.

PART B — (5 x 16 = 80 marks)

11.	(a)	(i)	Explain the different forms of proof with examples.	(8)
	. (-)	(ii)	Prove that, if L is accepted by an NFA with $arepsilon$ -transitions, th	
			accepted by an NFA without $arepsilon$ transitions	. (8)
			Or	
	(b)	(i) 1	Prove that if n is a positive integer such that $n \mod 4$ is 2 or n is not a perfect square.	3 then (6)
		(ii)	Construct a DFA that accept the following language.	
			${x \in {a,b}: x _a = \text{odd and } x _b = \text{even.}}$	(10)
12.	(a)	Find	I the min-state DFA for $(0+1)*10$.	•
	•	٠.	\mathbf{Or}	
	(b)		I the regular expression of a language that consist of set of ts with 11 as well as ends with 00 using Rij formula.	string
13.	(a)	Disc	cuss the following •	
		(i)	CFG and Parse trees	(6)
•	esi Tabu	(ii)	Ambiguity in Context Free Grammars with example.	(10)
			Or	
	(b)	(i)	Construct PDA for the language	•
			$L = \{ww^R w \text{ is in } \{0, 1\}^*\}.$	(10)
	•	(ii)	Discuss on Deterministic PDA.	(6)
14.	(a)	(i)	Explain Turing machine as a computer of integer functions vexample.	vith an (10)
		(ii)	Remove E productions from the given grammar.	(6)
		,	\mathbf{Or}	
	(b)	Writ	te short notes on the following	:
	•	(i)	Two-way infinite tape TM.	(8)
	·_ · · ·	(ii)	Multiple tracks TM	(8)
•	*	` ′		

. (a)	(i)	Explain undecidability with respect to post correspondence problem. (8)
•	(ii)	Discuss the properties of recursive languages (8)
		Or
(b)	(i)	Explain any two undecidable problems with respect to Turing machine. (8)
	(ii)	Discuss the difference between NP-complete and NP-hard problems. (8)