E KA

Reg. No.:						
-----------	--	--	--	--	--	--

Question Paper Code: 73384

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2017.

Fifth Semester

Computer Science and Engineering

CS 2303/CS 53/10144 CS 504/CS 1303 — THEORY OF COMPUTATION

(Common to Seventh Semester Information Technology)

(Regulations 2008/2010)

(Also common to PTCS 2303 – Theory of Computation for B.E. (Part-Time) Fifth Semester – CSE – Regulations 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Define:
 - (a) Finite Automaton (FA)
 - (b) Transition diagram.
- 2. State the principle of induction.
- 3. List the operators used in the regular expression and their precedence.
- 4. Mention any four Closure properties of Regular languages.
- 5. Write the CFG for the language $L = \{a^n b^n | n \ge 1\}$.
- 6. Compare NFA and PDA.
- 7. State pumping lemma for CFL.
- 8. What is chomsky normal form?
- 9. Define RE language
- 10. Differentiate recursive and non-recursive languages.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) (i) Explain the steps in conversion of NFA to DFA. Convert the following Figure 11 (a) (i) NFA to DFA. (8)

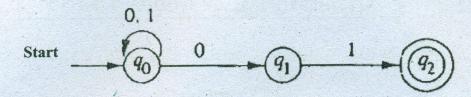


Figure 11 (a) (i)

(ii) Prove that, if L is accepted by an NFA with ∈ transitions, then L is accepted by NFA without ∈ transitions. (8)

Or

- (b) (i) Prove the equivalence of NFA and DFA using subset construction. (8)
 - (ii) Give Deterministic Finite Automata accepting the following language over the alphapet.
 - (1) Number of 1's is a multiples of 3
 - (2) Number of 1's is not a multiples of 3. (8)
- 12. (a) Using pumping lemma for the regular sets, prove that the language $L = \{a^m b^n \mid m > n\}$ is not regular. (10)
 - (ii) Prove any two closure properties of regular languages. (6)

Or

- (b) Construct a minimized DFA that can be derived from the following regular expression 0*(01)(0/111)*. (16)
- 13. (a) (i) Is the grammar $E \rightarrow E + E/E * E/id$ is ambiguous? Justify your answer. (6)
 - (ii) Find the context free languages for the following grammars.
 - (1) $S \rightarrow asbs/bsas/\varepsilon$
 - $(2) S \to asb/ab. \tag{10}$

Or

- (b) (i) Construct the PDA for $L = \{ww^R / w \text{ is in } (a+b)^*\}$. (10)
 - (ii) Discuss the equivalence between PDA and CFG. (6)

14.	(a)	(i)	Construct the following grammar in CNF:		
			S -> ABC BaB		
			A -> aA BaC aaa		
			B -> bBb a D		
			C-> CA AC		
			$D \rightarrow \varepsilon$.		(8)
		(ii)	Discuss on Turing Machines.		(8)
			Ór.		
	(b)	(i)	List and explain the closure properties of CFL,		(8)
		(ii)	Explain in detail about programming techniques Machines.	for '	Turing (8)
15.	(a)		lain post-correspondence problems and decidable and lems with examples.	unded	cidable
			* Or		
	(b)	Expl	ain the class P and NP problems with suitable example.		