Reg. No. :

Question Paper Code : 91350

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

Fifth Semester

Computer Science and Engineering

CS 2303/CS 53/10144 CS 504/CS 1303 — THEORY OF COMPUTATION

(Common to Seventh Semester Information Technology)

(Regulation 2008/2010)

(Common to PTCS 2303 — Theory of Computation for B.E. (Part-Time) Fifth Semester – CSE — Regulation 2009)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

1. Define Deductive proof.

- 2. Design DFA to accept strings over $\Sigma = (0,1)$ with two consecutive 0's.
- 3. Prove or disprove that $(r+s)^* = r^* + s^*$.
- 4. State the pumping lemma for regular languages.

5. Give the general forms of CNF.

- 6. Show that CFLs are closed under substitutions.
- 7. Let G be the grammar $S \to aB/bA$ $A \to a |aS| bAA$ $B \to b |bS| aBB$. For the string aaabbabbba, find (a) LMD and (b) RMD
- 8. Define Diagonalization (Ld) Language.

9. Define multitape turing machine.

10. Give examples for NP-complete problems.

PART B — $(5 \times 16 = 80 \text{ marks})$

(a) (i) Prove that every tree has 'e' edges and 'e + 1' nodes. (6)

(ii) Prove that for every integer $n \ge 0$ the number $4^{2n+1} + 3^{n+2}$ is a multiple of 13. (10)

Or

- (b) (i) Let L be a set accepted by a NFA and then prove that there exists a DFA that accepts L. (10)
 - (ii) Construct a DFA equivalent to the NFA. M=({a,b,c,d}, {0,1}, δ,a, {b,d}) where δ is a defined as
 (6)

0	0	1
a	{b,d}	{b}
b	с	{b,c}
с	d	a
d	-	а

12. (a) Construct a minimized DFA for the RE $10 + (0 + 11) 0^*1$.

Or

(b) (i) Show that
$$L = \{0^{n^2} / \text{ is an integer}, n \ge 1\}$$
 is not regular. (6)

(ii) Explain the DFA minimization algorithm with an example. (10)

- 13. (a) (i) Write a grammar G to recognize all prefix expressions involving all binary arithmetic operators. Construct a parse tree for the sentence '-* + abc/de' using G?' (6)
 - (ii) Show that the following grammar G is ambiguous $S \rightarrow SbS/a$. (6)
 - (iii) Construct a context free grammar for $\{0^m 1^n / 1 \le m \le n\}$. (4)

Or

- (b) (i) If L is context free language prove that there exists a PDA M, such that L = N(M).
 (8)
 - (ii) Prove that If L is N(M₁) (the language accepted by empty stack) for some PDA M₁, then L is N(M₂) (the language accepted by final state) for some PDA M₂.
 (8)

11.

(16)

14. (a)

(i) Find a grammar G' in CNF form equivalent to G,

$$S \to a AD, A \to aB/bAB, B \to b, D \to d.$$
 (6)

(ii) Convert to GNF the grammar G, G = ({A₁, A₂, A₃}, {ab}, P,A₁} where P consists of the following $A_1 \rightarrow A_2A_3$, $A_2 \rightarrow A_3A_1/b$, $A_3 \rightarrow A_1A_2/a$. (10)

Or

- (b) (i) Design a TM, M to implement the function "MULTIPLICATION" using the subroutine "COPY". (12)
 - (ii) Show that language $\{0^n 1^n 2^n / n \ge 1\}$ is not context free language. (4)
- 15. (a) (i) Show that the union of two recursive language is recursive & union of two recursively enumerable language is recursive. (12)
 - (ii) Define the language L_u and show that L_u is RE language. (4)

Or

3

(b) State and Prove Post Correspondence Problem and Give example. (16)