\square

Question Paper Code : 91350

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

Fifth Semester
Computer Science and Engineering

CS 2303/CS 53/10144 CS 504/CS 1303 - THEORY OF COMPUTATION

(Common to Seventh Semester Information Technology)

(Regulation 2008/2010)
(Common to PTCS 2303 - Theory of Computation for B.E. (Part-Time) Fifth Semester - CSE - Regulation 2009)

Time : Three hours
Maximum : 100 marks

> Answer ALL questions.
> PART A- $(10 \times 2=20$ marks $)$

1. Define Deductive proof.
2. Design DFA to accept strings over $\sum=(0,1)$ with two consecutive 0 's.
3. Prove or disprove that $(r+s)^{*}=r^{*}+s^{*}$.
4. State the pumping lemma for regular languages.
5. Give the general forms of CNF.
6. Show that CFLs are closed under substitutions.
7. Let G be the grammar $S \rightarrow a B / b A \quad A \rightarrow a|a S| b A A \quad B \rightarrow b|b S| a B B$. For the string aaabbabbba, find (a) LMD and (b) RMD
8. Define Diagonalization (L_{d}) Language.
9. Define multitape turing machine.
10. Give examples for NP-complete problems.

$$
\begin{equation*}
\text { PART B }-(5 \times 16=80 \text { marks }) \tag{6}
\end{equation*}
$$

11. (a) (i) Prove that every tree has ' e ' edges and ' $e+1$ ' nodes.
(ii) Prove that for every integer $n \geq 0$ the number $4^{2 n+1}+3^{n+2}$ is a multiple of 13.

Or
(b) (i) Let L be a set accepted by a NFA and then prove that there exists a DFA that accepts L.
(ii) Construct a DFA equivalent to the NFA. $\mathrm{M}=(\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\},\{0,1\}, \delta, \mathrm{a}$, $\{\mathrm{b}, \mathrm{d}\}$) where δ is a defined as

δ	0	1
a	$\{\mathrm{b}, \mathrm{d}\}$	$\{b\}$
${ }^{\mathrm{b}}$	c	$\{\mathrm{b}, \mathrm{c}\}$
c	d	a
d	-	a

12. (a) Construct a minimized DFA for the RE $10+(0+11) 0$ * 1 .

Or
(b) (i) Show that $L=\left\{0^{n^{2}} /\right.$ is an integer, $\left.n \geq 1\right\}$ is not regular.
(ii) Explain the DFA minimization algorithm with an example.
13. (a) (i) Write a grammar G to recognize all prefix expressions involving all binary arithmetic operators. Construct a parse tree for the sentence '-* + abc/de' using G?
(ii) Show that the following grammar G is ambiguous $S \rightarrow S b S / a$.
(iii) Construct a context free grammar for $\left\{0^{m} 1^{n} / 1 \leq m \leq n\right\}$.

Or
(b) (i) If L is context free language prove that there exists a PDA M, such that $\mathrm{L}=\mathrm{N}(\mathrm{M})$.
(ii) Prove that If L is $\mathrm{N}\left(\mathrm{M}_{1}\right)$ (the language accepted by empty stack) for some PDA M_{1}, then L is $N\left(M_{2}\right)$ (the language accepted by final state) for some PDA M_{2}.
14. (a) (i) Find a grammar G' in CNF form equivalent to G, $S \rightarrow a A D, A \rightarrow a B / b A B, B \rightarrow b, D \rightarrow d$.
(ii) Convert to GNF the grammar $\mathrm{G}, \mathrm{G}=\left(\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}\right\}\right.$, $\left.\{\mathrm{ab}\}, \mathrm{P}, \mathrm{A}_{1}\right\}$ where P consists of the following $A_{1} \rightarrow A_{2} A_{3}, A_{2} \rightarrow A_{3} A_{1} / b$, $A_{3} \rightarrow A_{1} A_{2} / a$.

$$
\begin{equation*}
\mathrm{Or} \tag{10}
\end{equation*}
$$

(b) (i) Design a TM, M to implement the function "MULTIPLICATION" using the subroutine "COPY".
(ii) Show that language $\left\{0^{n} 1^{n} 2^{n} / n \geq 1\right\}$ is not context free language.
15. (a) (i) Show that the union of two recursive language is recursive \& union of two recursively enumerable language is recursive.
(ii) Define the language L_{u} and show that L_{u} is RE language.

Or
(b) State and Prove Post Correspondence Problem and Give example.

