Reg. No.

Question Paper Code : 57255

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016
 Fifth Semester
 Computer Science and Engineering
 CS 6503 - THEORY OF COMPUTATION

(Regulations 2013)

Time : Three Hours
Maximum : 100 Marks

Answer ALL questions.

 PART - A ($10 \times 2=20$ Marks $)$1. Draw a non-deterministic automata to accept strings containing the substring 0101 .
2. State the pumping Lemma for regular languages.
3. What do you mean by null production and unit production? Give an example.
4. Construct a CFG for set of strings that contain equal number of a's and b's over $\Sigma=\{a, b\}$.
5. Does a pushdown Automata has memory ? Justify.
6. Define a pushdown automaton.
7. What are the differences between a finite automata and a Turing machine ?
8. What is a Turing machine ?
9. When is a recursively enumerable language said to be recursive ?
10. Identify whether Tower of Hanoi' problem is tractable or intractable. Justify your answer.

$$
\text { PART }- \text { B }(5 \times 16=80 \text { Marks })
$$

11. (a) (i) Construct a NFA that accepts all strings that end in 01. Give its transition table and the extended transition function for the input string 00101. Also construct a DFA for the above NFA using subset construction method.
(ii) Prove the following by principle of Induction. $\Sigma_{x=1}^{n} x^{2}=\frac{n(n+1)(2 n+1)}{6}$.

OR

(b) (i) What is a Regular Expression ? Write a regular expression for set of strings that consists of alternating 0 's and 1 's.
(ii) Write and explain the algorithm for minimization of a DFA. Using the above algorithm minimize the following DFA.

12. (a) (i) Construct a reduced grammar equivalent to the grammar $G=(N, T, S, P)$ where
$N=\{S, A, C, D, E\}$
$T=\{a, b\}$
$P=\{S \rightarrow \mathrm{aAa}, \mathrm{A} \rightarrow \mathrm{Sb}, \mathrm{A} \rightarrow \mathrm{bCC}, \mathrm{A} \rightarrow \mathrm{DaA}, \mathrm{C} \rightarrow \mathrm{abb}, \mathrm{C} \rightarrow \mathrm{DD}$,
$\mathrm{E} \rightarrow \mathrm{aC}, \mathrm{D} \rightarrow \mathrm{aDA}\}$
(ii) When is a grammar said to be ambiguous ? Explain with the help of an example.
(iii) Show the derivation steps and construct derivation tree for the string 'ababbb’
by using leftmost derivation with the grammar
$\mathrm{S} \rightarrow \mathrm{AB} \mid \varepsilon$
$A \rightarrow a B$
$\mathrm{B} \rightarrow \mathrm{Sb}$

OR

(b) (i) What is the purpose of normalization ? Construct the CNF and GNF for the following grammar and explain the steps.
$\mathrm{S} \rightarrow \mathrm{aAa}|\mathrm{bBb}| \varepsilon$
$\mathrm{A} \rightarrow \mathrm{C} \mid \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{C} \mid \mathrm{b}$
$\mathrm{C} \rightarrow \mathrm{CDE} \mid \varepsilon$
$\mathrm{D} \rightarrow \mathrm{A}|\mathrm{B}| \mathrm{ab}$
(ii) Construct a CFG for the regular expression $(011+1)(01)$.
13. (a) (i) Construct a pushdown automaton to accept the following language L on

$$
\begin{equation*}
\Sigma=\{a, b\} \text { by empty stack. } L=\left\{w w^{R} \mid w \in \Sigma^{+}\right\} \tag{10}
\end{equation*}
$$

(ii) What is an Instantaneous description of a PDA ? How will you represent it ? Also give the three important principles of ID and their transactions.

OR

(b) (i) Explain acceptance by final state and acceptance by empty stack of a pushdown automata.
(ii) State pumping Lemma for CFL. Use pumping lemma to show that the language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{i} b^{\mathrm{j}}} \mathrm{c}^{\mathrm{k}} / \mathrm{I}<\mathrm{j}<\mathrm{k}\right\}$ is not a CFL.
14. (a) (i) Construct a Turing machine to accept palindromes in an alphabet set $\Sigma=\{a, b\}$. Trace the strings "abab" and "baab".
(ii) Explain the variations of Turing machines.

OR

(b) (i) Explain Halting problem. Is it solvable or unsolvable problem? Discuss.
(ii) Describe Chomsky hierarchy of languages with example. What are the devices that accept these languages ?
15. (a) What is a Universal Turing machine ? Bring out its significance. Also construct a Turing machine to add two numbers and encode it.

OR

(b) What is a post correspondence problem (PCP) ? Explain with the help of an example.

