Reg. No. :

Question Paper Code : 41149

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Sixth Semester

Computer Science and Engineering

080230026 - THEORY OF COMPUTATION

(Regulation 2008)

Time : Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Design a Turing machine to recognize all strings consisting of an even number of 1's.
- 2. What is the difference between a recursive language and a recursively enumerable language?
- 3. What do you meant by undecidable problem?
- 4. Define computable functions.
- 5. What do you mean by NP Complete?
- 6. Define Polynomial time mapping reducible.
- 7. What is class L and NL?
- 8. What do you mean by Oracle Turing machine?
- 9. Define BPP.
- 10. What is trapdoor function?

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Design a Turing machine that recognizes the language $\{0^n 1^n | n \ge 1\}$ (8)
 - (ii) Prove that every language accepted by a multi tape Turing machine is accepted by some single tape Turing machine.
 (8)

	(b)	(i)	Design a Turing machine that can compute the proper subtra (i.e.) $m - n$ where m and n are positive integers. $M - N$ is define $m-n$ if $m > n$ and 0 if $m \le n$.	ction ed as (10)
		(ii)	Prove that language L and its complement are recus enumerable then L is recursive.	ively (6)
2.	(a)	(i)	Prove that $HALT_{TM} = \{ (M,w) M \text{ is a TM that halts on string Undecidable.} \}$	w} is (10)
	2	(ii)	Prove that REGULAR _{TM} is undecidable.	(6)
			Or	
	(b)	(i)	Consider the following Turing machine $T = (\{q_0,q_1\}, \{0, \{0, 1, \#\}, \delta, q_0, \#, \{q_1\})$ where δ is defined by $\delta(q_0, 1) = (q_0, q_0, q_0)$ and $\delta(q^2, 0) = (q_0, 0, L)$, 1 }, 0, R)
			and consider the input $w = 110$. Convert the given Turing maginto MPCP instances.	chine (10)
		(ii)	Prove that ELBA is undecidable.	(6)
3.	(a)	(i) Let $t(n)$ be a function where $t(n)$? n. Prove that every $t(n)$ time Non-deterministic TM has an equivalent $2^{\circ(t(n))}$ time deterministic TM. (8)		time nistic (8)
		(ii)	Prove that Hamiltonian path verifier is NP problem.	(8)
			Or	
	(b)	(i)	Define and Prove Cook Levin theorem.	(12)
		(ii)	Prove that formula Φ is satisfiable if only if G has a k clique.	(4)
4.	(a)	(i)	Let f : N->R be a function with $f(n) \ge n$ then prove NSPACE(f(n)) <u>C</u> SPACE (f (n)) ² .	that (10)
		(ii)	Discuss briefly about Generalized Geography game.	(6)
			Or	
	(b)	(i)	Prove that NL = coNL.	(8)
	1.0	(ii)	Write short notes on circuit complexity.	(8)
5.	(a)	(i)	Define and prove Fermat's theorem.	(8)
		(ii)	Write and prove the approximation algorithm for vertex of problem.	cover (8)
			Or	
	(b)	(i)	Define and Prove that IP PSPACE.	(8)
		(ii)	Briefly explain about the public key cryptosystems.	(8)