Question Paper Code : 51134

Reg. No. :

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

Sixth Semester

Computer Science and Engineering

080230026 — THEORY OF COMPUTATION

(Regulation 2008)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What is Turing Machine?
- 2. What is meant by halting problem?
- 3. What is Mapping reducibility?
- 4. Define Turing reducible.
- 5. What is Time complexity?
- 6. Define class P and NP completeness.
- 7. What is Circuit complexity?
- 8. Define PSPACE and PSPACE-complete.
- 9. What is probabilistic algorithm?
- 10. Define Parallel computation.

(i)

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a)
- Give implementation-level description of Turing machines that decide the following language over the alphabet $\{0,1\}$ {w/w contains an equal number of 0s and 1s}. (10)
- (ii) Show that a language is Turing-recognizable if and only if some enumerators enumerates it. (6)

Or

- (b) (i) Show that Halting Problem in undecidable. (10)
 - (ii) Prove that ANFA is decidable.

(6)

12.	(a)	(i) Prove the theorem using reducibility concept: ETM is undeci	dable.
			(10)
		(ii) Prove REGULARTM is undecidable.	(6)
		Or	1
	(b) ·	(i) Prove the Recursive theorem.	(8)
		(ii) Show that MIN(TM) is not Turing-recognizable.	(8)
13.	(a)-	(i) Prove that every CFL is a member of P.	(10)
		(ii) Show that SUBSET-SUM is in NP.	(6)
		Or	
	(b)	Prove that HAMPATH is NP-complete.	(16)
14.	(a)	Prove the Savitch's theorem.	(16)
Or			
	(b)	Prove IP = PSPACE.	(16)
15.	(a)	(i) Prove that NL is a subset of NC^2 .	(8)
		(ii) Prove that EQRPOB is in BPP.	(8)
		Or	
	(b)	Explain about Parallel computation.	(16)