Reg. No. :

Question Paper Code : 41146

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Fifth Semester

Computer Science and Engineering

080230020 - FORMAL LANGUAGES AND AUTOMATA THEORY

(Regulation 2008)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What are the applications of FA?
- 2. Construct a NDFA that accepts all the strings in $\{a,b\}^+$ with either two consecutive a's or two consecutive b's.
- 3. Define Arden's theorem.
- 4. Write the regular expression for integer and floating point number.
- 5. What is meant by distinguishable states?
- 6. Show that the difference of two regular languages is regular.
- 7. Write a CFG for the language $L = \{0^*1^*\}$
- 8. Define instantaneous description of PDA.
- 9. What are the closure properties of CFL?
- 10. State pumping lemma for CFL.

PART B — $(5 \times 16 = 80 \text{ marks})$

- Prove the following : if $X \le 4$ then $2^x \le X^2$. Use the principle of (a) (i) mathematical induction. (8)
 - (ii) Prove that if L is accepted by some DFA iff L is accepted by NFA with ε - transition. (8)

Or

(b) Construct equivalent DFA for the given NFA

	0	1
$\rightarrow p$	$\{p,q\}$	$\{p\}$
q	$\{r\}$	$\{r\}$
r	$\{s\}$. Φ
*s	$\{s\}$	$\{s\}$

12. Construct a NFA for the regular expression $(aa+b)^*(bb+a)^*$. (a) (i) (8)

> Construct regular expression to the given FA using Arden's (ii)theorem. (8)

	0	1
\rightarrow, A	A	B
В	C	B
С	A	B

Or

(b) Obtain regular expression for the following finite automata. (16)

Prove that the language $L = \{a^n | n = i^2 \ i \ge 1\}$ is not regular. 13. (a) (i) (8)

> (ii) Discuss any two closure properties of RLs.

Or

(8)

11.

(16)

(b) Construct the minimal DFA for the following DFA using the state equivalence algorithm. (16)

State/input	a	b
$\rightarrow 1$	2	3
2	4	5
3	6	7
*4	4	5
5	6	7
*6	4	5
*7	6	7

14. (a)

(

(i) Find the derivation tree of $a^*b + a^*b$ where G is given by (6) $S \rightarrow S + S$ $S \rightarrow S^*S$ $S \rightarrow a/b$

(ii) Design PDA for
$$L = \{a^n b^{2n} \mid n \ge 0\}$$
.

Or

(b) Construct the CFG for the following PDA.

 $P = (\{q_0, q_1\}), \{0, 1\}, \{X, Z_0\}, \delta, q_0, Z_0, \Phi)$ where δ is given by

$$\begin{split} &\delta(q_0,0,Z_0) = \left\{ (q_0,XZ_0) \right\} \quad \delta(q_0,0,X) = \left\{ (q_0,XX) \right\} \\ &\delta(q_0,1,X) = \left\{ (q_1,\varepsilon) \right\} \quad \delta(q_1,1,X) = \left\{ (q_1,\varepsilon) \right\} \\ &\delta(q_1,\varepsilon,X) = \left\{ (q_1,\varepsilon) \right\} \quad \delta(q_1,\varepsilon,Z_0) = \left\{ (q_1,\varepsilon) \right\} \end{split}$$

15. (a)

Find GNF for the grammar.

 $G = (\{X_1, X_2, X_3\}, \{a, b\}, P, X_1) \text{ where P consists of the following}$ $X_1 \to X_2 X_3$ $X_2 \to X_3 X_1 \mid b$ $X_3 \to X_1 X_2 \mid a$

Or

(b) (i) Write brief about the Decision Properties of CFL. (10)
(ii) Prove that if L is a CFL and R is a RL, then L ∩ R is a CFL. (6)

(10)

(16)

(16)