Reg. No. :

Question Paper Code : 11144

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2014.

Fifth Semester

Computer Science and Engineering

080230020 - FORMAL LANGUAGES AND AUTOMATA THEORY

(Regulation 2008)

Time : Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Write the three main steps involved to prove induction hypothesis.
- 2. Write the condition to prove two automata are equivalent.
- 3. What is meant by non regular grammar? Give example.
- 4. Write regular expression for language over the input symbols $\Sigma = \{a, b\}$, in which the strings of the language should not have two consecutive a and b as substring.
- 5. What is meant by emptiness and finiteness of the language?
- 6. Prove that the given language is not regular. $L = \{a^n b^n | where n \ge 1\}$
- 7. Write CFG for the language $L = \{a^n b^{2n} | where n \ge 1\}$
- 8. Write the equivalent unambiguous grammar for the following grammar : $E \rightarrow E + E |E * E |(E)| id$
- 9. Convert the given CFG into CNF. $S \rightarrow aS \mid bS \mid AB \mid \in$ $A \rightarrow dA \mid \in$ $B \rightarrow b$
- 10. Eliminate left recursion of the given grammar: $A \rightarrow AaB \mid a \mid aB$ $B \rightarrow b$

PART B — $(5 \times 16 = 80 \text{ marks})$

- (a) (i) Prove that "For every NFA, there exists a DFA which simulates the behavior of NFA If L is the set accepted by NFA, then there exists a DFA which also accepts L". (10)
 - (ii) Write the applications of automata

Or

- (b) (i) Prove that "If L is accepted by NFA with ε transitions then L is accepted by an NFA without ε -transitions".
 (8)
 - (ii) Construct NFA-∈ for the regular expression (a | b)* and convert it into DFA.
 (8)
- 12. (a) Write an algorithm for generating regular expression from DFA. (16)

Or

- (b) (i) Prove that all context free grammars are not regular grammar. (6)
 - (ii) Write the applications of regular expression. (6)
 - (iii) Write the characteristic of language for which regular expression can not be written. (4)
- 13. (a) Prove that regular languages are closed under union, concatenation and closure. (16)

Or

(b) (i

14.

(i) Construct minimum state finite automata for the following DFA.

- (ii) State and prove pumping lemma for Regular Language. (6)
- (a) (i) Prove that the equivalence of PDA and CFG. (10)
 - (ii) Write the applications of CFG.

11144

(6)

(10)

(6)

(b)	(i)	Construct PDA for language of Palindrome over input $\Sigma = \{a, b\}$.	symbol (10)
	(ii)	Prove that the following grammar is not ambiguous.	(6)
		$S \rightarrow S + A \mid A$	
		$A \to A * B B$	
		$B \rightarrow (S) \mid id$	
(a)	Convert the following grammar into GNF		(16)
$A \rightarrow BC$		BC	
	$B \rightarrow$	CA b	
	$C \rightarrow $	AB a	

Or

15.

(b) (i) Prove that CFL's are not closed under complementation. (8)
(ii) State and prove the pumping lemma for CFL. (8)