

Reg. No.:						٠.

Question Paper Code: 52393

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017 Fifth/Seventh Semester

Computer Science and Engineering CS 2403 – DIGITAL SIGNAL PROCESSING

(Common to Information Technology)

(Regulations 2008)

(Also common to PTCS 2403 – Digital Signal Processing for B.E. (Part-Time) Sixth Semester – CSE – Regulations 2009)

Time: Three Hours

Maximum: 100 Marks

ate A type of a present of Answer ALL questions

PART – A

 $(10\times2=20 \text{ Marks})$

- 1. The impulse response of a discrete LTI system is given by $h(n) = \left(\frac{1}{3}\right)^n u[n]$. Determine whether the system is stable.
- 2. Find the z-transform of the signal $x[n] = \{2, 3, 1, -2, 0, 1\}$. Also specify its ROC.
- 3. How many number of complex multiplications and additions are required for computing N-point DFT using DIF FFT algorithm?
- 4. Write down the mathematical expressions used for computing DFT and IDFT.
- 5. Using the bilinear transformation $s = \frac{1-z^{-1}}{1+z^{-1}}$ what is the image of $s = e^{j\frac{\pi}{2}}$ in the z-plane.
- 6. What are the different methods available for design of IIR filters?
- 7. Under what condition an FIR filter will exhibit linear phase response.
- 8. Draw the direct form I realization given the impulse response $h[n] = \{2, -2, 3, 4, 5\}$.
- 9. Given $x[n] = \{1, 2, 5, 5, 2, 3, 4, 2\}$ down sample x(n) by a down sampling factor M = 2.
- 10. State the need for image enhancement.

PART - B

 $(5\times16=80 \text{ Marks})$

- 11. a) i) Given $x[n] = \{1, 2, 3, 4\}$ and $h[n] = \{1, 2, 3\}$. Find the linear convolution, circular convolution and cross correlation of the given sequences. (9)
 - ii) Given the input-output relation of a discrete time system y[n] = 2x[n-1]. Determine whether it is a linear and time invariant system. (7)

(OR)

b) A second order system is represented by the difference equation

$$y(n) = \frac{3}{4}y(n-1) - \frac{1}{8}y(n-2) + x(n) - x(n-1)$$

Find the impulse response h(n) of the system using z-transform.

12. a) Given $x[n] = \{1, 2, 1, 2, 1, 2, 1, 2\}$ compute DFT using decimation in frequency algorithm.

(OR)

- b) State and prove any four properties of DFT.
- 13. a) Design a digital low pass filter using bilinear transformation to satisfy the following characteristics.
 - a) Monotonic stop band and pass band.
 - b) -2 dB cutoff frequency at 0.3π rad
 - c) Magnitude down at least 15 dB at 0.8 π rad.

(OR)

b) A system is represented by its transfer function H(z)

$$H\!\left(z\right)\!=\!\frac{\frac{11\!\!\left/\!8\,z^{-2}-21\!\!\left/\!4\,z^{-1}+7\right.}{1\!\!\left/\!8\,z^{-2}-3\!\!\left/\!4\,z^{-1}+1\right.}$$

Draw the DFI and DFII realization of the system.

14. a) What are the various errors that occur in digital filter design due to finite register length?

(OR)

- b) Design an FIR filter of order N = 7 with cutoff frequency $\omega_c = \frac{\pi}{4}$ rad, using Hanning window.
- 15. a) Explain in detail the down sampler both in time and frequency domain with necessary illustrations.

(OR)

- b) Write short notes on:
 - i) Adaptive filters.

(8)

ii) Histogram processing.

(8)