200	Ma	
reg.	No.	

Question Paper Code : 51356

B.E./B. Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Seventh Semester

Computer Science and Engineering

CS 2032/CS 701/10144 CSE 32 - DATA WAREHOUSING AND DATA MINING

(Common to Sixth Semester Information Technology)

(Regulations 2008/2010)

(Common to PTCS 2032/10144 CSE 32 – Data Warehousing and Data Mining for B.E. (Part-Time) Sixth Semester – Computer Science and Engineering – Regulations 2009/2010)

Time : Three Hours

Maximum: 100 Marks

Answer ALL questions. PART – A $(10 \times 2 = 20 \text{ Marks})$

1. List the characteristics of a data warehouse.

 State why data partitioning is a key requirement for effective parallel execution of database operations.

1

3. What is a reporting tool ?

4. Give examples for managed query tools.

5. List out the data mining functionalities.

6. Why data cleaning routines are needed ?

7. Define frequent itemset.

- 8. Give examples for binary and multidimensional association rules.
- Classify hierarchical clustering methods. 9.
- 10. What is an outlier?

PART – B $(5 \times 16 = 80 \text{ marks})$

- Explain with diagrammatic illustration the relationship between 11. (a) (i) operational data, a data warehouse and data marts. (6)
 - (ii) "A data warehouse can be modeled by either a star schema or a snowflake schema". With relevant examples discuss the two types of schema. (10)

OR

What is a data warehouse ? Explain the steps in building a data warehouse. (b)

12.	(a)	(i)	Diagrammatically illustrate and discuss the architecture of MOLA	AP and
		,	ROLAP.	(12)
•		(ii)	Compare MOLAP and ROLAP	(4)

OR

List and discuss the features of Cognos Impromptu. (b)

Write short notes on : 13. (a)

(i)	Classification of data mining systems	(8)
(ii)	Data mining task primitives.	(8)
	OR	

Discuss the various pre-processing tasks. (b)

(16)

(16)

2

(a) Apply the Apriori algorithm for discovering frequent item sets to the following data set :

Trans ID	Items Purchased
101	Litchi, Hill Banana, Straw Berry
102	Litchi, Passion Fruit
103	Passion Fruit, Tomato
104	Litchi, Hill banana, Straw Berry
105	Pears, Straw Berry
106	Pears
107	Pears, Passion Fruit
108	Litchi, Hill Banana, Water Melon, Straw Berry
109	Water Melon, Tomato
110	Litchi, Hill Banana

Use 0.3 for the minimum support value.

14.

T

JE

OR

(b) Explain the working of the naive Bayesian classifier with an example.

(a) Consider five points {X₁, X₂, X₃, X₄, X₅} with the following coordinates as a two dimensional sample for clustering :

$$X_1 = (0, 2.25); X_2 = (0, 0.25); X_3 = (1.25, 0) : X_4 = (4.5, 0); X_5 = (4.5, 2.5)$$

Illustrate the K-means partitioning algorithm (clustering algorithm) using the above data set. (16)

OR

(b) Explain with an example the density-based local outlier detection. (16)

(16)

(16)