Reg. No. :

Question Paper Code : 91355

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.
Sixth Semester
Computer Science and Engineering
- CS 2352/CS 62/10144 CS 602 — PRINCIPLES OF COMPILER DESIGN

(Regulation 2008/2010)

(Common to PTCS 2352—Principles of Compiler Design for B.E. (Part-Time) Fifth
Semester—Computer Science and Engineering—Regulation 2009)

Time : Three hours Maximum : 100 marks:

Answer ALL questions.

PART A — (10 x 2 = 20 marks)

What is the role of lexical analyzer?

it

Write regular expression to describe a languages consist of strings made of
even numbers a and b. :

List out the various storage allocation strategies.
Write a CF grammar to represent palindrome.
What are the types of intermediate languages?
Give syntax directed translation for case statement.
Differentiate between basic block and flow graph.
Draw DAG to represent afi]=b[i]; a[i]=& t;

Represent the following in flow graph

el S B LR A

i =1; sum = 0; while(i <=10)sum+ = i;i + +;}

10. What is global data flow analysis?

PART B — (5 x 16 = 80 marks)

"11. (a) (1) Explain the need for grouping of phases of compiler. - (8)
(1) Explain a language for specifying the lexical analyzer. (8)

Or
(b) (1) Write short notes on compiler construction tools. (8)

(i) Explain — specification and recognition of tokens. : (8)

12,

13.

14.

15.

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(1) Explain the specification of simple type checker. (8)

(i) ~ Explain — runtime environment with suitable example. (8)
Or

Find the LALR for the given grammar and parse the sentence (a+b)*c

E—->E+TIT,T >T*FIF,F - (E)id. (16)

Generate intermediate code for the following code segment along with the

~ required syntax directed translation scheme

While (i<10)
IfG%2==0)

Evensum = evensum + i;
Else

Oddsum =oddsum + 13 :

Or
Generate intermediate code for the following code segment along with the
required syntax directed translation scheme. (16)

s=s+ali][j];

(1) Explain register allocation and assignment with suitable example.

(8
(i1) Explain — code generation phase with simple code generation
algorithm. . (8)
Or
(1) Generate DAG representation of the following code and list out the

applications of DAG representation. (8)
i=1; while (i<=10) do '
sum+ = a[i];

(i1)) Explain — Generating code from DAG with suitable example. (8)

(i) Explain — principle sources of optimization. (8)
(i) Ilustrate optimization of basic blocks with an example. (8)
Or

Explain peephole optimization and various code improving

Transformatiops. ' (16)

2 : 91355

