	 	_	 _		 _	 	
Reg. No.:				•:			

Question Paper Code: 50402

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017 Seventh Semester

Computer Science and Engineering
CS6704 – RESOURCE MANAGEMENT TECHNIQUES
(Regulations 2013)

Time: Three Hours

I grant marked and continued bearinging many it is not decay at a first

Maximum: 100 Marks

Answer ALL questions

PART – A

 $(10\times2=20 \text{ Marks})$

- 1. What is Feasible Region in a LPP?
- 2. What is Sensitivity Analysis?
- 3. What is Dual Problem in LPP?
- 4. What is Dual Simplex Method?
- 5. What do you understand by Cutting Plane Algorithm?
- 6. What is Dynamic Programming?
- 7. What is CPM?
- 8. Write about PERT.
- 9. What do you mean by Transportation Problem?
- 10. What do you understand by Assignment Problem?

PART - B

 $(5\times16=80 \text{ Marks})$

11. a) A manufacturer makes two components, T and A, in a factory that is divided into two shops. Shop I, which performs the basic assembly operation, must work 5 man-days on each component T but only 2 man-days on each component A. Shop II, which performs finishing operation, must work 3 man-days for each of component T and A it produces. Because of men and machine limitations, Shop I has 180 man-days per week available, while Shop II has 135 man-days per week.

A Charles A data of a color

If the manufacturer makes a profit of Rs. 300 on each component T and Rs. 200 on each component A, how many of each should be produced to maximize his profit. Use simplex method.

- b) Explain the types of Models. Also explain the characteristics of a good model along with the principles involved in modeling.
- 12. a) Use dual simplex method to solve the following LPP:

$$\begin{aligned} \text{Maximize Z} &= -3X_1 - 2X_2\\ \text{Subject to } X_1 + X_2 &\geq 1\\ X_1 + X_2 &\leq 7\\ X_1 + 2X_2 &\geq 10\\ X_2 &\leq 3\\ \text{and } X_1, \ X_2 &\geq 0\\ \text{(OR)} \end{aligned}$$

- b) Elucidate the procedure for formulating a linear programming problems. Explain the advantages and limitations of linear programming.
- 13. a) Obtain an optimum basic feasible solution to the following transportation problem:

•		7	Го	Available			
	7	3	2	2			
From	2	1	3	3.			
	3	4	6	5			
Demand	4	1	5	10			
		(OR)					

b) Solve the following assignment problem for maximization given the profit matrix (profit in rupees):

Machines

		P	Q	\mathbf{R}	\mathbf{S}
٠	A	51	53	54	50
Job	\mathbf{B}_{\perp}	47	50	48	50
•	\mathbf{C}	49	50	60	61
•	D	63	64	60	60

14. a) Solve the following LPP using dynamic programming approach:

$$Max Z = 3X_1 + 5X_2$$

subject to

$$X_1 \le 4$$

$$X_2 \le 6$$

$$3X_1 + 2X_2 \le 18$$

$$X_1, X_2 \ge 0$$

(OR)

b) Use Branch and Bound method to solve the following:

$$Maximize Z = 2X_1 + 2X_2$$

Subject to
$$5X_1 + 3X_2 \le 8$$

$$X_1 + 2X_2 \le 4$$

and

$$X_1, X_2 \ge 0$$
 and integer.

15. a) The following table indicates the details of a project. The duration are in days .

"a" refers to optimistic time, "m" refers to most likely time and "b" refers to pessimistic time duration.

Activity	1 - 2	1 - 3	1 - 4	2 - 4	2 - 5	3 - 4	4 - 5
a	2	3	4	8	6	2	2
m	4	4	5	9	8	3	.5
b	5	6	6	11	12	4	7

- i) Draw the net work.
- ii) Find the critical path.
- iii) Determine the expected standard deviation of the completion time.

(OR

- b) Explain the following:
 - i) Difference between PERT and CPM
 - ii) Lagrangian method and Khun-Tucker conditions.