Reg. No. :			T										
------------	--	--	---	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 70438

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2023.

Fourth/Fifth/Seventh Semester

Computer Science and Engineering

CS 8491 – COMPUTER ARCHITECTURE

(Common to: Computer and Communication Engineering / Electrical and Electronics Engineering / Robotics and Automation / Information Technology)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Draw the basic functional units of a computer.
- 2. State Amdahl's law.
- 3. Do the following using 2's complement method. $(11011)_2 (10011)_2$.
- 4. Write the multiplication rule for floating point numbers.
- 5. What are hazards? Write its types.
- 6. Write the formula for calculating time between instructions in a pipelined processor.
- 7. Differentiate in-order execution from out-of-order execution.
- 8. What is meant by speculation?
- 9. Define TLB.
- 10. What is virtual memory?

PART B —
$$(5 \times 13 = 65 \text{ marks})$$

11. (a) Explain the various components of computer System with neat diagram.

- (b) (i) Explain the differences between CISC and RISC. (7)
 - (ii) Write in detail about various addressing modes. (6)
- 12. (a) Using a 4-bit version of the algorithm to save pages, divide 7_{ten} by 2_{ten}, or 0000 0111_{two} by 0010_{two}.

Or

- (b) Show the IEEE 754 binary representation of the number $-0.75_{\rm ten}$ in single and double precision.
- 13. (a) Find out the hazards in the following instructions and eliminate them by using stalls:

LW R1, 0(R2)

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

Or

- (b) Describe in detail about the pipelined implementation of data path and control with diagrams.
- 14. (a) Explain about the Flynn's classification with neat diagrams.

Or

- (b) Explain the simultaneous multithreading with example.
- 15. (a) Explain the various memory mapping schemes used in cache memory design.

Or

(b) Explain briefly about Direct Memory Access (DMA).

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) Compute the following problems using BOOTH'S ALGORITHM

 $(+13) \times (-6)$

 $(+13) \times (+6)$

 $(-13) \times (-6)$

 $(-13) \times (+6)$

Or

(b) Calculate 8/3 using Restoring Division method.