			R	leg. No. :		

Question Paper Code: 70861

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2023.

Fifth Semester

Computer Science and Engineering

MA 8551 – ALGEBRA AND NUMBER THEORY

(Common to Computer and Communication Engineering/Information Technology)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

11/01/2024-AN

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Find the inverse of 2 under the binary operation * defined in R by a*b=a+b-1.
- 2. Define a subgroup with an example.
- 3. Find all the roots of $f(x) = x^2 4$ in $Z_5[x]$.
- 4. Give an example of a polynomial that is irreducible in R[x].
- 5. Find the number of positive integer's ≤ 1745 and not divisible by 13.
- 6. State Euclid's theorem.
- Determine whether the LDE 6x + 12y + 15z = 10 is solvable.
- 8. What is the remainder when 2^{35} is divided by 7.
- 9. State Fermat's little theorem.
- 10. Compute $\phi(n)$ for n = 5!.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Let G be the set of all rigid motions of a equilateral triangle. Identify the elements of G. Show that it is a non-abelian group of order six.
 - (ii) Show that $\{Z_4, +_4, \bullet_4\}$ is a ring. (8 + 8)

Or

- (b) (i) Prove that every subgroup of a cyclic group is cyclic.
 - (ii) Find $[25]^{-1}$ in Z_{72} . (8 + 8)
- 12. (a) Prove that a finite field F has order p^t , where p is a prime and $t \in Z^+$. (16)

Or

- (b) (i) If $f(x) = 3x^5 8x^4 + x^3 x^2 + 4x 7$, g(x) = x + 9 and $f(x), g(x) \in \mathbb{Z}_{11}[x]$, find the remainder when f(x) is divide by g(x).
 - (ii) Find the gcd of $2x^3 + 2x^2 x 1$ and $2x^4 x^2$ in Q[x]. (8 + 8)
- 13. (a) (i) Prove that $n^4 + 2n^3 + n^2$ is divisible by 4.
 - (ii) Apply Euclidean algorithm to express the gcd of 4076 and 1024 as a linear combination of themselves. (8 + 8)

Or

- (b) (i) Prove that there are infinitely many primes of the form 4n+3.
 - (ii) Using recursion, evaluate [24, 28, 36, 40]. (8 + 8)
- 14. (a) (i) Find the general solution of the linear Diophantine equation 2x + 3y = 4.
 - (ii) Find the incongruent solutions of $19x \equiv 29 \pmod{16}$. (8 + 8)

Or

2

(b) State and prove Chinese Remainder Theorem. Using it find the least positive integer that leaves the remainder 1 when divided by 3, 2 when divided by 5 and 3 when divided by 7. (16)

- 15. (a) (i) State and prove Wilson's Theorem.
 - (ii) Using Euler's theorem find the remainder when 7^{1020} is divided by 15. (8 + 8)

Or

- (b) (i) If m and n are relatively prime then show that the Euler's Phi function satisfies $\phi(mn) = \phi(m)\phi(n)$ and hence compute the value of $\phi(1976)$.
 - (ii) Compute tau and sigma functions for n = 6120. (8 + 8)