eg.	N	0.
-----	---	----

Question Paper Code : 66191

M.E./M.Tech. DEGREE EXAMINATION, DECEMBER 2015 / JANUARY 2016

First Semester

Computer Science and Engineering

MA7155 : APPLIED PROBABILITY AND STATISTICS

(Common to M.E. Biometrics and Cyber Security M.E. Computer Science and Engineering with specialization in Networks) M.E. Industrial Engineering M.E. Multimedia Technology

M.E. Software Engineering and M. Tech. Information Technology)

(Regulations - 2013)

(Statistical tables is to be provided)

Time : Three Hours

3.

4.

Maximum: 100 Marks

25/1

Answer ALL questions.

 $PART - A (10 \times 2 = 20 \text{ Marks})$

- 1. If the probability mass function of a random variable X is given by $P(X = r) = kr^3$, where r = 1,2,3,4. Find the value of k and distribution function of X.
- 2. If the distribution function of a random variable X is given by

$$F(x) = \begin{cases} 1 - \frac{4}{x^2}, & \text{for } x > 2\\ 0, & \text{for } x \le 2 \end{cases}, \text{ find } P(5 < X < 6)$$

- If the joint pdf of X and Y is given by $f(x, y) = \frac{8}{9}xy$, 1 < x < y < 3, find the marginal density function of X.
- If the joint pmf of X and Y is given by $P(x, y) = \begin{cases} C(x + y), & x = 0, 1, 2 \text{ and } y = 0, 1, 2 \\ 0, & \text{otherwise} \end{cases}$, find C and P(X = 1).
- 5. Give the normal equations to fit the parabola $y = a + bx + cx^2$.

- Can Y = 5 + 2.8x and X = 3 0.5 y be the estimated regression equations of y on x. 6. and x on y respectively? Explain.
- 7. Define type I and type II errors.
- Give the value of χ^2 for a 2 × 2 contingency table with cell frequencies a, b, c and d. 8.
- Define second principle component. 9.
- If X₁ and X₂ are two uncorrelated random variables, then what is the correlation 10. coefficient matrix ?

$PART - B (5 \times 16 = 80 Marks)$

- An insurance company found that only 0.005% of the population is 11. (i) (a) involved in a certain type of accident each year. If its 2000 policyholders were randomly selected from the population, what is the probability that not more than two of its clients are involved in such an accident next year?
 - The daily consumption of milk in a city in excess of 20,000 gallons is (ii) approximately distributed as a Gamma variate with parameters k = 2 and

 $\lambda = \frac{1}{10,000}$. The city has a daily stock of 30,000 gallons. What is the probability that the stock is insufficient on a particular day?

OR

- Find the moment generating function of Binomial distribution and hence (b) (i) obtain its mean and variance.
 - In an intelligence test administered on 1000 children the average score is (ii) 42 and standard deviation 24. Assuming the normal distribution,
 - Find the number of children exceeding the score 50 and (1)
 - Find the number of children with score lying between 30 and 54. (2)
- (a) (i) In a partially destroyed laboratory data, only the equations giving the two lines of regression of y on x and x on y are available and are respectively 7x - 16y + 9 = 0, 5y - 4x - 3 = 0. Calculate the coefficient of correlation.
 - The joint probability density function of a random variable (X, Y) is given (ii)

by $f(x, y) = \begin{cases} x^2 + \frac{xy}{3}, & 0 \le x \le 1, 0 \le y \le 2\\ 0, & \text{otherwise} \end{cases}$. Find $P(X + Y \ge 1)$ and $P\left(Y < \frac{1}{2} / X < \frac{1}{2}\right).$

2

66191

.........

(8)

(8)

(8)

(8)

(8)

(8)

12.

	- (b) -	(i)	If the probabilities $f(x, y) = \begin{cases} k(x + y) \\ 0 \end{cases}$	ity of a two - 2y); $x = 0$	o discrete ran), 1, 2 and y otherwise	ndom variabl $= 0, 1, 2$.	les X and Y	Y is given by	
			(1) Find k, (2)	Find the m	arginal distr	ibutions and	conditiona	al distribution	
			of Y for $X = x$.	6 hours	e mitin e		l elgen		(8)
		(11)	The joint pro variable (X, Y)	is given by	y functi	on of a tw	o dimensi	onal random	
1	516		$f(x, y) = \begin{cases} 4xye \\ 0 \end{cases}$	$\frac{-(x^2+y^2)}{y^2}$;	$x \ge 0, y \ge 0$ otherwise '	find the dens	sity functio	on of	
	1		$U = \sqrt{X^2 + Y^2}.$		at 5% level				(8)
13.	(a)	A ra unkr	ndom sample (X nown mean μ. Co	X_1, X_2, X_3, X_3	X ₄ , X ₅) of siz following es	ze 5 is drawn timators to e	from a po stimate μ.	pulation with	L T
		t ₁ = -	$\frac{(x_1 + x_2 + x_3 + x_2)}{5}$	$\frac{(x+x_5)}{x_5}$, $t_2 =$	$\frac{(x_1 + x_2)}{2} + 2$	X_3 and $t_3 = \frac{(2)}{3}$	$\frac{2x_1 + x_2 + 2}{3}$	$\frac{\lambda x_3}{\lambda}$ where λ	
		is su	ich that t_3 is an	unbiased e	stimator of	μ. Find $λ$. A	are t_1 and	t ₂ unbiased ?	
		State	e giving reasons,	the estimat	tor which is	best among t	$_{1}, t_{2} \text{ and } t_{3}$		(16)
					OR				
	(b)	(i)	Fit a straight li square :	ne y = a +	bx to the fol	lowing data,	using prin	ciple of least	(8)
			x: 1 2	3 4	6 8				
			y: 2.4 3	3.6 4	5 6				
1		(ii)	Find the most l Calcutta from t	ikely price he followir	in Bombay ng :	correspondin	ng to the pr	rice of ₹ 70 at	: }
				Ca	lcutta Bo	mbay			
			Average Pri	ce	65	67			
			Standard Devi	ation	2.5	3.5			
			Correlation coe	efficient bet	tween the pri	ices of comm	nodities in	the two cities	
	. 01		15 0.8.				0 4 7.		(8)
14.	(a)	(i)	Before an incr 1000 were con consumers of significant decr	ease in exc sumers of tea in a sat rease in the	tise duty on tea. After th mple of 120 consumptio	tea, 800 peo e increase in 00 persons. I n of tea after	ople out of duty, 800 Find wheth the increa	f a sample of people were her there is a se in duty.	(8)
		(ii)	Two researche students level.	rs A and H Can you	B adopted d say that the	ifferent tech e techniques	niques what adopted	ile rating the by them are	(9)
			Besearchers	Below	Avorage	Abovo	Conjus	Total	(0)
			Researchers	average	Average	average	Genius	iotai	
			Α.	40	33	25	2	100	
			В	86	60	44	10	200	
			Total	126	93	69	12	300	

0	
25	2
44	10
69	12

OR

14.

(b) (i) Samples of two types of electric bulbs were tested for length of life and the following data were obtained.

in lemonthean	Size	Mean	S.D.	
Sample I	8	1234 hours	36 hours	
Sample II	7	1036 hours	40 hours	

Is the difference in means sufficient to warrant that type I bulbs are superior to type II bulbs at 5% level? (8)

(ii) From the following two sample values, find out whether they have come from the same population at 5% level. (8)

Sample I :	17	27	18	25	27	29	27	23	17
Sample II :	16	16	20	16	20	17	15	21	

(a) Find the mean matrix, covariance matrix, standard deviation matrix and correlation coefficient matrix for two random variables X₁ and X₂ whose joint mass function is given by.

x_1/x_2	0	1
-1-1	0.24	0.06
0	0.16	0.14
1	0.40	0.0

OR

(b) (i) Calculate the population principal component of the random variables X_1, X_2, X_3 whose covariance matrix is $\Sigma = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

(ii) Let X be distributed as $N_3(\mu, \Sigma)$ where $\mu' = (1, -1, 2)$ and

 $\Sigma = \begin{pmatrix} 4 & 0 & -1 \\ 0 & 5 & 0 \\ -1 & 0 & 2 \end{pmatrix}$, which of the following random variables are independent? Explain.

4

- (1) X_1 and X_2
- (2) X_1 and X_3
- (3) X_2 and X_3
 - (4) (X_1, X_3) and X_2

(8)

(8)