Reg. No.:	
	1 1

Question Paper Code: 40376

M.E./M.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2018.

First Semester

Biometrics and Cyber Security

CP 5151 — ADVANCED DATA STRUCTURES AND ALGORITHMS

(Common to M.E. Computer Science and Engineering/M.E. Computer Science and Engineering (with Specialization in Networks)/M.E. Multimedia Technology/M.E. Software Engineering/M.Tech. Information Technology)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. What is the function of an algorithm?
- 2. What is Big O notation in algorithm?
- 3. Differentiate binary tree and binary search tree.
- 4. Give an example for Fibonacci heap.
- 5. What is a graph data structure?
- 6. Name the most important Minimum Spanning-Tree Algorithm.
- 7. What are the elements of dynamic programming?
- 8. What is the time complexity of Huffman coding?
- 9. How do you prove NP completeness?
- 10. Define polynomial time reduction.

PART B —
$$(5 \times 13 = 65 \text{ marks})$$

11. (a) How insertion sort works? Illustrate with example.

Or

(b) Explain Substitution method and Recurrence Tree Method for solving recurrence.

12. (a) Explain the basic Operations of a binary search tree with example.

Or

- (b) Why is Red-Black Trees? Show its properties.
- 13. (a) Discuss Bellman-Ford Algorithm with example.

Or

- (b) What is minimum spanning tree? Give a steps for finding MST using Kruskal's algorithm with example.
- 14. (a) Give a series of n arrays (of appropriate sizes) to multiply:

$$A1 \times A2 \times A3 \times A4$$

Determine where to place parentheses to minimize the number of multiplications.

Or

- (b) Summarize the Elements of the Greedy strategy.
- 15. (a) Prove that TSP is NP-Complete.

Or

(b) Interpret the techniques applied to solve NP-complete problems.

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

16. (a) Given a graph

Find shortest paths from source to all vertices in the given graph using Dijkstra's shortest path algorithm.

Or

(b) How do you analyze algorithms? Give a detailed study.