Reg. No. :

Question Paper Code : 21376

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Third Semester

Computer Science and Engineering

CS 2202/CS 34/EC 1206 A/080230012/10144 CS 303 – DIGITAL PRINCIPLES AND SYSTEM DESIGN

(Common to Information Technology)

(Regulations 2008/2010)

(Common to PTCS 2202 – Digital Principles and System Design for B.E. (Part-Time) Second Semester – CSE – Regulations 2009)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Convert the gray code (11011) to binary code.
- 2. Simplify the following expression with Boolean laws.Y = ABC + AB'C + ABC'
- 3. What is the drawback of serial adder? For which applications are they preferred?
- 4. Distinguish between half adder and full adder.
- 5. Why a multiplexer is called a data selector?
- 6. How many address bits are needed to operate a $2k \times 8$ bit ROM frequency?
- 7. Distinguish between synchronous sequential circuits and asynchronous sequential circuits.
- 8. How many logic devices are required for a MOD-64 parallel counter?
- 9. State One Hot State Assignment.
- 10. Compare the ASM chart with a conventional flow chart.

			PART B — $(5 \times 16 = 80 \text{ marks})$		
11.	(a)	(i)	List the ASCII code for the 10 decimal digits with an odd parity the leftmost position.	in (6)	
		(ii)	Simplify the three variable logic expression.	(6)	
			$Y = \pi M (1,3,5)$		
		(iii)	Implement $Y = (A'B + AB') (C + D')$ using NOR gates.	(4)	
			Or		
	(b)	Sim	plify the following Boolean function by using tabulation method. (1	16)	
		F (A	$(B,C,D) = \Sigma(1,4,6,7,8,9,10,11,15)$		
12.	(a)	(i)	With the neat diagram, discuss the working principle of carry loo ahead adder. (1	ok- 11)	
		(ii)	Design a 4-bit adder using three full adders and one half adder.	(5)	
	Or				
	(b)	(i)	Write the VHDL code for BCD-to-7 segment code convertors, usin a selected signal assignment. (1	ng 12)	
		(ii)	Write test bench for half adder circuit.	(4)	
13.	(a)	(i)	Draw the PLA circuit to implement the functions (1	10)	
			$\mathbf{F}_{1} = \mathbf{A}'\mathbf{B} + \mathbf{A}\mathbf{C}' + \mathbf{A}'\mathbf{B}\mathbf{C}'$		
			$\mathbf{F}_2 = (\mathbf{A}\mathbf{C} + \mathbf{A}\mathbf{B} + \mathbf{B}\mathbf{C})'$		
		(ii)	With the neat sketch, explain the working of RAM cell.	(6)	
			Or		
	(b)	(i)	Write a VHDL code for 2-to-1 multiplexer using if-then-eless statement. (1		
		(ii)	Derive the circuit for an 8-to-3 priority encoder.	(6)	
14.	(a)	A clocked sequential circuit is provided with a single input x and a single output z. Whenever the input produces a string of pulses 111 or 000 and at the end of the sequence it produces an output $z = 1$ and overlapping is not allowed. (16)			
		(i)	Obtain the state diagram		

(ii) Obtain the state table

(iii) Design the sequence detector.

Or

(b) Using D flip-flops, design a synchronous counter, to count the following repeated binary sequence 0,1,2,4,6. Write the VHDL code for the same.

(16)

15. (a) Design an asynchronous sequential circuit with two inputs X and Y and with one output Z. Whenever Y is 1, input X is transferred to Z. When Y is 0, the output does not change for any change in X. Use SR latch for implementation of the circuit. (16)

Or

- (b) (i) With an example explain dynamic and essential hazards. (8)
 - (ii) Give the hazard-free realization for the following Boolean functions. (8) $f(A,B,C,D) = \Sigma m(1,3,6,7,13,15).$