Reg. No. :

\square

Question Paper Code : 21376

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Third Semester
Computer Science and Engineering

CS 2202/CS 34/EC 1206 A/080230012/10144 CS 303 - DIGITAL PRINCIPLES AND SYSTEM DESIGN
(Common to Information Technology)
(Regulations 2008/2010)
(Common to PTCS 2202 - Digital Principles and System Design for B.E. (Part-Time) Second Semester - CSE - Regulations 2009)

Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - $(10 \times 2=20$ marks $)$

1. Convert the gray code (11011) to binary code.
2. Simplify the following expression with Boolean laws.
$Y=A B C+A B^{\prime} C+A B C^{\prime}$
3. What is the drawback of serial adder? For which applications are they preferred?
4. Distinguish between half adder and full adder.
5. Why a multiplexer is called a data selector?
6. How many address bits are needed to operate a $2 \mathrm{k} \times 8$ bit ROM frequency?
7. Distinguish between synchronous sequential circuits and asynchronous sequential circuits.
8. How many logic devices are required for a MOD-64 parallel counter?
9. State One Hot State Assignment.
10. Compare the ASM chart with a conventional flow chart.

PART B - ($5 \times 16=80$ marks $)$
11. (a) (i) List the ASCII code for the 10 decimal digits with an odd parity in the leftmost position.
(ii) Simplify the three variable logic expression.
$\mathrm{Y}=\pi \mathrm{M}(1,3,5)$
(iii) Implement $Y=\left(A^{\prime} B+A B^{\prime}\right)\left(C+D^{\prime}\right)$ using NOR gates.

Or

(b) Simplify the following Boolean function by using tabulation method. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,4,6,7,8,9,10,11,15)$
12. (a) (i) With the neat diagram, discuss the working principle of carry lookahead adder.
(ii) Design a 4-bit adder using three full adders and one half adder.
Or
(b) (i) Write the VHDL code for BCD-to-7 segment code convertors, using a selected signal assignment.
(ii) Write test bench for half adder circuit.
13. (a) (i) Draw the PLA circuit to implement the functions
$\mathrm{F}_{1}=\mathrm{A}^{\prime} \mathrm{B}+\mathrm{AC}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}$
$\mathrm{F}_{2}=(\mathrm{AC}+\mathrm{AB}+\mathrm{BC})^{\prime}$
(ii) With the neat sketch, explain the working of RAM cell.

Or
(b) (i) Write a VHDL code for 2-to-1 multiplexer using if-then-else statement.
(ii) Derive the circuit for an 8-to-3 priority encoder.
14. (a) A clocked sequential circuit is provided with a single input x and a single output z . Whenever the input produces a string of pulses 111 or 000 and at the end of the sequence it produces an output $z=1$ and overlapping is not allowed.
(i) Obtain the state diagram
(ii) Obtain the state table
(iii) Design the sequence detector.

Or
(b) Using D flip-flops, design a synchronous counter, to count the following repeated binary sequence $0,1,2,4,6$. Write the VHDL code for the same.
15. (a) Design an asynchronous sequential circuit with two inputs X and Y and with one output Z . Whenever Y is 1 , input X is transferred to Z . When Y is 0 , the output does not change for any change in X . Use SR latch for implementation of the circuit.

Or

(b) (i) With an example explain dynamic and essential hazards.
(ii) Give the hazard-free realization for the following Boolean functions.

$$
\begin{equation*}
\mathrm{f}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(1,3,6,7,13,15) \tag{8}
\end{equation*}
$$

