Reg. No. : \square

Question Paper Code : 97042

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

Second Semester

Computer Science and Engineering CS 6201 - DIGITAL PRINCIPLES AND SYSTEM DESIGN
(Common to Computer and Communication Engineering and Information Technology)
(Regulation 2013)
Time : Three hours
Maximum : 100 marks

Answer ALL questions.
PART A- (10 $\times 2=20$ marks $)$

1. State the Principle of duality.
2. Implement AND gate using only NOR gates.
3. Implement the following Boolean function using $8: 1$ multiplexer $F(A, B, C)=\Sigma m(1,3,5,6)$.
4. Define hazard.
5. Distinguish Moore and Mealy circuit.
6. With reference to a JK flip flop, what is racing?
7. How many states are there in a 3-bit ring counter? What are they?
8. What is a Priority Encoder?
9. Whether PAL is same as PLA? Explain.
10. What is a volatile memory? Give example.
11. (a) Simplify the function $F(w, x, y, z)=\sum m(2,3,12,13,14,15)$ using tabulation method. Implement the simplified function using gates.

Or
(b) (i) Simplify the Boolean function in Sum of Products (SOP) and Product of Sums (POS) $F(A, B, C, D)=\Sigma m(0,1,2,5,8,9,10)$:
(ii) Plot the following Boolean function in Karnaugh map and simplify it. $F(w, x, y, z)=\Sigma m(0,1,2,4,5,6,8,9,12,13,14)$.
12. (a) Design and implement a 8421 to gray code converter. Realize the converter using only NAND gates.

> Or
(b) Design 2-bit Magnitude Comparator and write a Verilog HDL code.
13. (a) Design a MOD-10 Synchronous counter using JK flip-flops. Write execution table and state table.

> Or
(b) (i) How race condition can be avoided in a flip flop?
(ii) Realize the sequential circuit for the state diagram shown below. (8)

14. (a) An asynchronous sequential circuit is described by the following excitation and output function.
$Y=X_{1} X_{2}+\left(X_{1}+X_{2}\right) Y$
$Z=Y$.
(i) Draw the logic diagram of the circuit.
(ii) Derive the transition table and output map.
(iii) Describe the behaviour of the circuit.

Or
(b) Design a synchronous counter using JK flip-flop to count the following sequence $7,4,3,1,5,0,7 \ldots$.
15. (a) Design a BCD to Excess-3 code converter and implement using suitable PLA.

Or
(b) Discuss on the concept of working and applications of semiconductor memories.

