\square

Question Paper Code : 27156

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015.

Second Semester
Computer Science and Engineering
CS 6201 - DIGITAL PRINCIPLES AND SYSTEM DESIGN
(Common to Information Technology)

(Regulations 2013)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - ($10 \times 2=20$ marks $)$

1. Convert (126) ${ }_{10}$ to octal number and binary number.
2. Write short notes on weighted binary codes.
3. Discuss NOR operation with a truth table.
4. Draw the truth table of half adder.
5. Write short notes on propagation delay.
6. Draw the diagram of T flip flop and discuss its working.
7. What is a shift register?
8. What is a race condition?
9. What is memory address register?
10. Write short notes on PLA.

PART B $-(5 \times 16=80$ marks $)$
11. (a) Simplify the following switching functions using Karnaugh map method and realize expression using gates $F(A, B, C, D)=\Sigma(0,3,5,7,8,9,10,12,15)$.

Or
(b) Simplify the following switching functions using Quine McCluskey's tabulation method and realize expression using gates $F(A, B, C, D)=$ $\Sigma(0,5,7,8,9,10,11,14,15)$.
12. (a) Design a full subtractor and derive expression for difference and borrow. Realize using gates.

Or
(b) Design a code converter that converts a 8421 to BCD code.
13. (a) Design a sequence detector that detects a sequence of three or more consecutive 1 's in a string of bits coming through an input line and produces an output whenever this sequence is detected.

Or
(b) Design a three bit synchronous counter with T flip flop and draw the diagram.
14. (a) Analyze the following clocked sequential circuit and obtain the state equations and state diagram.

Or
(b) Design a serial adder using a full adder and a flip flop.
15. (a) Implement the following function using PAL F1 $(\mathrm{A}, \mathrm{B}, \mathrm{C})=\Sigma(1,2,4,6)$; F2 (A, B, C) $=\Sigma(0,1,6,7) ;$ F3 (A, B, C) $=\Sigma(1,2,3,5,7)$.

Or
(b) Design a combinational circuit using ROM that accepts a three bit binary number and outputs a binary number equal to the square of the input number.

