ANNA UNIVERSITY COIMBATORE

B.E. / B.Tech. DEGREE EXAMINATION - DECEMBER 2008

THIRD SEMESTER - CSE / IT
IT301- DIGITAL PRINCIPLES AND SYSTEM DESIGN

Time: Three Hours

Maximum: 100 Marks

PART A - ($20 \times 2=40$ Marks $)$

Answer ALL Questions

1. Solve $(247.36)_{8}=(x)_{2}=(y)_{16}$
2. Find the complement of $F=x(y+z)$ and show that $F+F^{\prime}=1$.
3. Realize the function $Y=A+B$ using only NAND gate.
4. Express the minterm m_{21} using minimúm number of variables.
5. Implement a full adder using two half adder \& OR gate
6. Mention the need for a carry look ahead adder.
7. State the condition to check the equality of two n bit binary numbers A and B.

8 What are the applications of HDL processing?
9. Realize the following expressions using verilog HDL.

$$
\begin{aligned}
& X=A+B^{\prime} C+B D \\
& Y=(A+B)\left(C^{\prime}+D\right)
\end{aligned}
$$

10. Draw the logic diagram of a combinational circuit which helps in data distribution.
11. Realize the function $F(A, B, C)=\Sigma m(1,2,6,7)$ using a decoder.
12. What are the different types of programming the PLA?
13. Construct JK flipflop using D flipflops?
14. Compare combinational circuit and sequential logic circuit
15. Write the HDL behavioural description of 4 bit shift registers
16. What is a race around condition?
17. Draw the hazard free circuit for the Boolean Expression

$$
\mathrm{y}=\mathrm{x}_{1} \mathrm{x}_{2}+\bar{x}_{2} \mathrm{x}_{3}
$$

18. Define the fundamental mode
19. What are the steps to be followed for the purpose of merging a flow table?
20. What is the reason for essential hazard?

PART B-(5 x $12=60$ Marks $)$

Answer Any FIVE Questions

21. (a) Simplify using K-map and express the reduced expression in SOP and POS form.

$$
\begin{equation*}
F=\sum m(0,6,8,13,14)+\sum d(2,4,10) \tag{8}
\end{equation*}
$$

(b) Reduce the following Boolean expression

$$
\begin{equation*}
F=\left(x^{\prime} y^{\prime}+z\right)^{\prime}+z+x y+w z \tag{4}
\end{equation*}
$$

22. Solve the given Boolean function using Quine MC Cluskey method and draw the logic diagram for the reduced expression using only NOR gates.

$$
\begin{equation*}
F(A, B, C, D)=\sum m(1,3,5,7,9,15)+\sum d(4,6,12,13) \tag{12}
\end{equation*}
$$

23. Design a code converter that converts a decimal digit from the $8,4,-2,-1$ code to BCD.
24. (a) Write down the behavioral description of a 4 to 1 line Multiplexer.
俋
(b) Implement the following two Boolean functions using a PLA.

$$
\begin{align*}
& A(x, y, z)=\sum m(1,2,4,6) \\
& B(x, y, z)=\sum m(0,1,2,6) \tag{8}
\end{align*}
$$

25. Design a parallel counter which counts the sequence $0,1,2,5,6,7$ using JK flipflops.
26. Design a sequential circuit specified by the given state diagram of a sequence detector using 'D' flip flops.

27. Explain the different types of hazards in combinational circuits and Sequential circuits with an example.
(12)
28. (a) Obtain a primitive flow table for an asynchronous sequential circuit with 2 inputs x, y and output Q . The output $\mathrm{Q}=\mathrm{x}$ as long as $\mathrm{y}=1$ and retains this value after y goes to 0 . Once y goes to 0 , a change in x does not change the value of output Q.
(b) Assign output values to don't cares in the flow table to avoid transient output pulses.

	00	01	11	10
a	$a, 0$	$b,-$	-, -	d,-
b	$a,-$	$b, 1$	$b, 1$	$c,-$
c	$b,-$	-,-	$b,-$	$c, 0$
d	c,-	$d, 1$	c,-	$d, 1$

