
Question Paper Code : 57234

B.E/B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016
Second Semester
Computer Science and Engineering
CS 6201 - DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to Information Technology)
(Regulations 2013)

Time : Three Hours
Maximum : 100 Marks

Answer ALL questions.

$$
\text { PART }-\mathbf{A}(10 \times 2=20 \text { Marks })
$$

1. Find the Octal equivalent of the hexadecimal number DC:BA.
2. What is meant by multilevel gates network ?
3. Define Combinational circuits.
4. Design the combinational circuit with 3 inputs and 1 output. The output is 1 when the binary value of the inputs is less than 3 . The output is 0 otherwise.
5. State the excitation table of JK-Flip Flop.
6. A seven bit Hamming code is received as 1111110 . What is the correct code?
7. What is the minimum number of flip flops needed to build a counter of modulus 8 ?
8. What is lockout? How it is avoided?
9. Define the critical rate and non critical rate.
10. Draw the wave forms showing static 1 hazard ?

PART - B (5 $\times 16=80$ Marks $)$

11. (a) Reduce the expression using Quine McCluskey method.

$$
\begin{align*}
& \mathrm{F}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\sum \mathrm{m}(0,2,4,5,6,7,8,10,14,17,18,21,29,31)+ \\
& \sum \mathrm{d}(11,20,22) \tag{16}
\end{align*}
$$

OR

(b) Determine the MSP form of the Switching function $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})={ }_{-}(0,2,4,6,8)+$ _d(10, 11, 12, 13, 14, 15).
12. (a) Design a full adder with inputs $x, \mathrm{y}, \mathrm{z}$ and two outputs S and C . The circuits performs $x+y+z, z$ is the input carry, C is the output carry and S is the Sum. OR
(b) Design a logic circuit that accepts a 4-bit Grey code and converts it into 4-bit binary code.
13. (a) Implement the following Boolean function with a 4×1 multiplexer and external gates. Connect inputs A and B to the selection lines. The input requirements for the four data lines will be a function of variables C and D these values are obtained by expressing F as a function of C and D for each of the four cases when $A B=00,01,10$ and 11 . These functions may have to be implemented with external gates. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,2,5,7,8,10,11,13,15)$.

OR

(b) Draw a neat sketch showing implementation of $Z_{1}=a b^{\prime} d^{\prime} e+a^{\prime} b^{\prime} c^{\prime} e+b c+d e$, $Z_{2}=a^{\prime} c^{\prime} e, Z_{3}=b c+d e+c^{\prime} d^{\prime} e+b d$ and $Z_{4}=a^{\prime} c^{\prime} e+c e$ using a $5^{*} 8^{*} 4$ PLA.
14. (a) Design a binary counter using T flip-flops to count in the following sequences :
(i) $000,001,010,011,100,101,111,000$
(ii) $000,100,111,010,011,000$

OR

(b) Design a modulo 5 synchronous counter using JK Flip Flop and implement it. Construct its timing diagram.
15. (a) Design an asynchronous sequential circuit with 2 inputs X and Y and with one output Z Wherever Y is 1 , input X is transferred to Z . When Y is 0 ; the output does not change for any change in X . Use SR latch for implementation of the circuit.

OR

(b) Discuss in detail the procedure for reducing the flow table with an example.

