Reg. No. : \square

Question Paper Code : 31298

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Third Semester

Computer Science and Engineering
CS 2202/CS 34/EC 1206 A/10144 CS 303/080230012 - DIGITAL PRINCIPLES AND SYSTEM DESIGN
(Common to Information Technology)
(Regulation 2008/2010)
(Common to PTCS 2202 - Digital Principles and System Design for B.E.
(Part-Time) Second Semester - CSE - Regulation 2009)
Time: Three hours
Maximum : 100 marks

> Answer ALL questions.
> PART A $-(10 \times 2=20$ marks $)$

1. Convert $(1001010.1101001)_{2}$ to base 16 and $(231.07)_{8}$ to base 10.
2. Realize XOR gate using only 4 NAND gates.
3. Implement $F=X Y^{\prime} Z+Y^{\prime} Z^{\prime}+X^{\prime} Z$ using AOI logic.
4. Obtain the truth table for BCD to Excess-3 code converter.
5. Draw the truth table and circuit diagram of 4 to 2 encoder.
6. Distinguish EEPROM and flash memory.
7. Realize a JK flip-flop using D flip-flop be and gates.
8. Write the HDL code for up-down counter using behavioral model.
9. Distinguish fundamental mode circuit and pulse mode circuit.
10. Define primitive flow table.
11. (a) Simplify the following Boolean function using Quine-McClusky $\operatorname{method} F=(A, B, C, D, E)=\Sigma m(0,1,3,7,13,14,21,26,28)_{+}$

$$
\begin{equation*}
\Sigma d(2,5,9,11,17,24) \tag{16}
\end{equation*}
$$

Or

(b) (i) Simplify the given Boolean function in POS form using K-map and draw the logic diagram using only NOR gates.

$$
\begin{equation*}
F(A, B, C, D)=\pi M(0,1,4,7,8,10,12,15)+d(2,6,11,14) \tag{10}
\end{equation*}
$$

(ii) Convert 78.5_{10} into binary.
(iii) Find the dual and complement of the following Boolean expression. $x y z^{\prime}+x^{\prime} y z+z(x y+w)$.
12. (a) Design a combinational circuit to perform BCD addition.

Or

(b) (i) Design a 4-bit magnitude comparator with three outputs: $A>B, A=B \& A<B$.
(ii) Construct a 4 -bit odd parity generator circuit using gates.
13. (a) (i) Realize 4×16 decoder using two 3×8 decoders with enable input.
(ii) Implement the two following Boolean functions using 8×2 PROM.

$$
\begin{equation*}
F 1=\Sigma m(3,5,6,7) \text { and } F 2=\Sigma m(1,2,3,4) \tag{6}
\end{equation*}
$$

(iii) Implement the following function using a multiplexer.

$$
\begin{equation*}
F(W, X, Y, Z)=\Sigma m(0,1,3,4,8,9,15) \tag{6}
\end{equation*}
$$

Or

(b) Implement the following two Boolean functions using PLA with 3 inputs, 4 product terms and 2 outputs.

$$
\begin{equation*}
F 1=\Sigma m(3,5,6,7) \text { and } F 2=\Sigma m(1,2,3,4) \tag{16}
\end{equation*}
$$

14. (a) Design a synchronous counter with the following sequence: $0,1,3,7,6,4$ and repeats. Use JK flip-flops.

Or
(b) Design the sequential circuit specified by the following state diagram Q.No. 14(b) using T flip-flops.

Fig. Q. 14(b)
15. (a) (i) What is the objective of state assignment in asynchronous circuit? Explain race-free state assignment with an example
(ii) Discuss about static, dynamic and essential hazards in asynchronous sequential circuits.

Or

(b) Design an asynchronous sequential circuit with inputs $x 1$ and $x 2$ and one output z . Initially and at any time if both the inputs are 0 , output is equal to. When x 1 or x 2 becomes $1, \mathrm{z}$ becomes 1 . When second input also becomes $1, \mathrm{z}=0$; The output stays at 0 until circuit goes back to initial state.

