Reg. No. : \square

Question Paper Code : 21298

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Third Semester
Computer Science and Engineering

CS 2202/CS 34/EC 1206 A/10144 CS 303/080230012 - DIGITAL PRINCIPLES AND SYSTEMS DESIGN
(Common to Information Technology).
(Regulation 2008/2010)
(Common to PTCS 2202 - Digital Principles and Systems Design for B.E. (Part-Time) Second Semester - CSE - Regulation 2009)

Time : Three hours
Maximum : 100 marks

$$
\begin{gathered}
\text { Answer ALL questions. } \\
\text { PART A }-(10 \times 2=20 \text { marks })
\end{gathered}
$$

1. Convert $(101101.1101)_{2}$ to decimal and hexadecimal form.
2. What are the limitations of Karnaugh map?
3. Write down the truth table of a full subtractor.
4. What is meant by Test Bench?
5. Distinguish between a decoder and a demultiplexer.
6. Compare SRAM and DRAM.
7. Derive the characteristic equation of a JK-flipflop.
8. What is a Mealy circuit?
9. What is primitive flow table?
10. What are static ' 1 ' and static ' 0 ' hazards?
11. (a) Reduce the following functions using Karnaugh map technique :
(i) $\quad f(A, B, C)=\Sigma m(0,1,3,7)+\Sigma d(2,5)$
(ii) $\quad F(w, x, y, z)=\Sigma m(0,7,8,9,10,12)+\Sigma d(2,5,13)$.

Or

(b) Simplify the Boolean function using Quine McCluskey method:

$$
\begin{gathered}
F(A, B, C, D, E, F)=\Sigma m(0,5,7,8,9,12,13,23,24,25,28,29,37, \\
40,42,44,46,55,56,57,60,61)
\end{gathered}
$$

12. (a) Design a full adder using 2 half adders.

Or

(b) Design a combinational circuit to convert binary to gray code.
13. (a) Implement the switching function $F=\Sigma m(0,1,3,4,12,14,15)$ using an 8 input MUX.

Or

(b) Implement the switching functions

$$
\begin{aligned}
& Z_{1}=a \bar{b} \bar{d} e+\bar{a} \bar{b} \bar{c} \bar{d} \bar{e}+b c+d e \\
& Z_{2}=\bar{a} \bar{c} e \\
& Z_{3}=b c+d e+\bar{c} \bar{d} \bar{e}+b d \\
& Z_{4}=\bar{a} \bar{c} e+c e \text { using } 5 \times 8 \times 4 \text { PLA. }
\end{aligned}
$$

14. (a) Using D flip-flops, design a synchronous counter which counts in the sequence, $000,001,010,011,100,101,110,111,000$.

Or

(b) Design a shift register using JK flipflops.
15. (a) (i) Explain the types of hazards in digital circuits.
(ii) Implement the switching function $F=\Sigma m(1,3,5,7,8,9,14,15)$ by a static hazard free 2 level AND-OR gate network.

Or

(b) Explain the steps for the design of asynchronous sequential circuits.

