Reg. No. : $\square$

## Question Paper Code : 21441

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015

Second Semester<br>Electronics and Communication Engineering

EC 2151/EC $25 / 080290007 / \mathrm{EE}$ 1152/10144 EC 205 - ELECTRIC CIRCUITS AND ELECTRON DEVICES
(Common to Computer Science and Engineering, Biomedical Engineering, Medical Electronics Engineering and Information Technology)
(Regulations 2008/2010)

Time : Three hours
Maximum : 100 marks

> Answer ALL questions.
> PART A - ( $10 \times 2=20$ marks $)$

1. State Kirchoff's law and voltage law.
2. State Maximum power transfer theorem.
3. Write the condition for resonance.
4. A load consisting of $6 \Omega$ resistance and $8 \Omega$ inductive resistance draw a current of 20A when connected to a sinusoidal source. Determine the voltage and power in the load.
5. What is the diffusion capacitance?
6. Compare PN diode and Zener diode.
7. What is avalanche breakdown?
8. Compare N-channel and P-channel JFET.
9. Draw the two transistor model of SCR.
10. Write the application of UJT.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) For the circuit shown in figure 11 (a)(i). Find the voltage across $20 \Omega$ resistor and current passing through it.


Fig. 11 (a)(i)
(ii) In the circuit shown, determine the current through the $40 \Omega$ resistor and total current delivered by the battery. Use Kirchoff's laws.


Fig. 11 (a)(ii)
Or
(b) (i) Find the current through $6 \Omega$ resistance in circuit shown in figure 11 (b)(i) using Superposition theorem.


Fig. 11 (b)(i)
(ii) Use Thevenin theorem find the current through $4+\mathrm{j} 10 \Omega$ impedance for the Figure 11(b) (ii).


Fig. 11(b)(ii)
12. (a) (i) A RLC series circuit consists of $\mathrm{R}=75 \Omega, \mathrm{~L}=125 \mathrm{mH}$ and $\mathrm{C}=200 \mu \mathrm{~F}$. The circuit is excited by a sinusoidal source of value $115 \mathrm{~V}, 60 \mathrm{~Hz}$. Determine the voltage across various elements and calculate the current and power.
(ii) A series RC circuit has $\mathrm{R}=1.0 \Omega$ and $\mathrm{C}=0.1 \mathrm{~F}, \mathrm{f}=50 \mathrm{~Hz}$. A constant voltage of 20 V is applied to the circuit at $\mathrm{t}=0$. Determine the voltage across the resistor and voltage across the capacitor.

## Or

(b) (i) A series circuit has $\mathrm{R}=100 \Omega, \mathrm{~L}=50 \mathrm{mH}$ and $\mathrm{C}=100 \mu \mathrm{~F}$ and is supplied with $200 \mathrm{~V}, 50 \mathrm{~Hz}$. Find the following impedance, current, power factor, power and voltage drops across each element.
(ii) Compare the series and parallel resonance circuit.
13. (a) With a neat sketch explain the construction, operation and characteristics of PN junction diode.

Or
(b) With a neat sketch explain the construction, operation and characteristics of Zener diode.
14. (a) Explain the construction and operation of NPN transistor and also discuss about its characteristics.

Or
(b) (i) Explain the construction and operation of Enhancement MOSFET.
(ii) Compare BJT and FET.
15. (a) Explain the construction and operation of Triac. List its advantages, disadvantages and its applications.

Or
(b) Explain the following
(i) Photoconductive cells
(ii) LCD

