	e de la respiración de la companiente de la companiente de la companiente de la companiente de la companiente La companiente de la companiente de la La companiente de la	
er e	et i volt er <mark>ditterrej g</mark> ent detall te genell hjøjner i til te ved tolde fri te te på ette ved tolde for tolde. Et	
	on among latong stronggrega yang kirik di pasayang lapang latin kan pang bilang bilang bilang bilang bilang bilang Alikang bilang	
44 (3	and the configurations are superferently being the superference of the configuration of the c	
		(,
in the second second	The except of the Community of the Anthony of the Community of the Communi	
14.44 (1 4 4 4 6)	・ - 19 - 学覧入げ	
e Montre Maria (1993) Prompa terah di Meser Prompa (1993)		
		(
	the state of the s	

|--|--|

Reg. No.:			*****

Question Paper Code: 50433

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017 Third Semester

Electronics and Communication Engineering EC6301 – OBJECT ORIENTED PROGRAMMING AND DATA STRUCTURES

(Common to : Biomedical Engineering/Medical Electronics/Robotics and Automation Engineering)
(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

PART – A

 $(10\times2=20 \text{ Marks})$

1. What is the output of the following program, if it is correct? Otherwise indicate the mistake:

int 1=10; Void main () {int 1=20; {int 1=30; cout<<1<::1;

}}

- 2. List out the advantages of new operator over malloc[] function.
- 3. What is the Need for initialization of object using Constructor?
- 4. Give the syntax of a pointer to a function which returns an integer and takes arguments one of integer type and 2 of float type. What is the difference between a class and a structure?
- 5. What is an Abstract Data Type? What are all not concerned in an ADT?
- 6. Define a heap. How can it be used to represent a priority queue?

7.	Draw	the binary search tree for the following inputs: 70, 15, 29, 33, 44, 12, 79.	* [.
8.	When	n a graph is said to be bi connected?	
9.	Listt	he applications of depth first traversal.	
10.	What	t is the feature of bucket sort algorithm?	
		PART – B (5×13=65 Mar	ks)
11.	a) i)	Write a program to demonstrate the use of Copy constructor.	(7)
	ii)	What is a destructor? Explain it with an example.	(6)
. !.	1	(OR)	
	b) i)	What is a friend function? What are the merits and demerits of using friend function?	(7)
1000	ii)	Define a class 'string'. Use overload '==' operator to compare two strings.	(6)
12.	W	ubbob!	(13)
		(OR)	
	b) i)	Explain the difference between a Normal virtual function and Pure virtual function with example.	(7)
	ii)	What is an Abstract class? Write a program for testing the debuggable class.	(6)
13.	a) i)	Design an algorithm to reverse the linked list. Trace it with an example.	(7)
	ii)	Define an efficient representation of two stacks in a given area of memory with n words an explain.	(6)
		(OR)	
	b) i)	Write an algorithm for inserting and deleting an element from Doubly linked list . $ \\$	(7)
	ii)	Explain linear linked implementation of stack and queue.	(6)

14. a) Explain Representing lists as Binary tree. Write algorithm for finding K th element and deleting an element in binary tree with example program. (OR)	(13)
(OI)	
b) Discuss in detail about Kruskal's and Prim's algorithm for weighted undirected graph.	(13)
15. a) i) Write a 'C++' program to implement binary search and compute its complexity.	(7)
ii) List the worst case and best case time complexity of various sorting techniques.	(6)
(OR)	
b) Describe the merge sort using divide and conquer technique with suitable example.	(13)
PART – C (1×15=15 Mar	rks)
16 a) Explain the algorithm of Quicksort by sorting the following set of numbers as	

16. a) Explain the algorithm of Quicksort by sorting the following set of numbers as an example: 42 47 52 57 62 37 32 27 22. Write the O/P for each iteration. (15)

(OR)

b) i) Convert the given graph with weighted edges to minimal spanning tree. (10)

ii) Write a short note on AVL trees. (5)