\square

Question Paper Code : 21353

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.

Third Semester

Electronics and Communication Engineering

EC 2203 / EC 34 / 10144 EC 304 / 080290010 - DIGITAL ELECTRONICS
(Regulation 2008 / 2010)
(Common to PTEC 2203 - Digital Electronics for Third Semester B.E. (Part-Time)
Electronics and Communication Engineering - Regulation 2009)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - $(10 \times 2=20$ marks $)$

1. State De Morgan's theorem.
2. What are Don't care terms?
3. Design a Half subtractor using basic gates.
4. Draw the logic diagram of a 4 line to 1 line Multiplexer.
5. Convert D flipflop to T flipflop.
6. How many flipflops are required to build a binary counter that counts from 0 to 1023 ?
7. What are the different types of programmable logic devices?
8. Distinguish between PLA and PAL.
9. What are Hazards?
10. Distinguish between a flowchart and an ASM chart.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) Minimize the given switching function using Quine - Mcclusky method.

$$
\begin{equation*}
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum(0,5,7,8,9,10,11,14,15) \tag{16}
\end{equation*}
$$

Or
(b) Simplify the given Boolean function into
(i) Sum of products form
(ii) Product of sum form and implement if using basic gates.

$$
\begin{equation*}
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(0,1,2,5,8,9,10) \tag{8}
\end{equation*}
$$

12. (a) Design a BCD adder and explain its working with necessary circuit diagram.

Or
(b) Design a 4 bit magnitude comparator and draw the circuit.
13. (a) Design a counter to count the sequence $0,1,2,4,5,6$ using SRFFs.

Or

(b) Design a 4 bit Asynchronous Ripple counter and explain its operation with timing diagrams.
14. (a) Design using PAL the following Boolean functions.

$$
\begin{align*}
& W(A, B, C, D)=\sum(2,12,13) \\
& X(A, B, C, D)=\sum(7,8,9,10,11,12,13,14,15) \\
& Y(A, B, C, D)=\sum(0,2,3,4,5,6,7,8,10,11,15) \\
& Z(A, B, C, D)=\sum(1,2,8,12,13) \tag{16}
\end{align*}
$$

Or
(b) Design and explain a 32×8 ROM.
15. (a) Design a hazard-free asynchronous circuit that changes state whenever the input goes from logic. 1 to logic 0 .

Or
(b) (i) Design a full adder using two half adders by writing verilog program.
(ii) Write Explanatory notes on Algorithmic state machines.

