\square

Question Paper Code : 97059

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014

Third Semester
Electronics and Communication Engineering
EC 6302 - DIGITAL ELECTRONICS
(Common to Mechatronics Engineering and Robotics and Automation Engineering)
(Regulation 2013)
Time : Three hours
Maximum : 100 marks

> Answer ALL questions.
> PART A $-(10 \times 2=20 \mathrm{marks})$

1. Simplify the following Boolean expression into one literal

$$
W^{\prime} X\left(Z^{\prime}+Y Z\right)+X\left(W+Y^{\prime} Z\right) .
$$

2. Draw the CMOS inverter circuit.
3. Construct 4-bit parallel adder/subtractor using Full adders and XOR gates.
4. Convert a two-to-four line decoder with enable input to 1×4 demultiplexer.
5. Realize JK flip flops.
6. How does ripple counter differ from synchronous counter?
7. Compare and contrast EEPROM and flash memory.
8. What is a Field Programmable Gate Arrays (FPGA) device?
9. Define ASM chart. List its three basic elements.
10. What is critical race condition in asynchronous sequential circuits? Give an example.

PART B - $(5 \times 16=80$ marks $)$
11. (a) (i) Convert the following function into Product of Max-terms.
$F(A, B, C)=\left(A+B^{\prime}\right)(B+C)\left(A+C^{\prime}\right)$.
(ii) Using Quine McClusky method, simplify the given function.
$F(A, B, C, D)=\Sigma m(0,2,3,5,7,9,11,13,14)$.
Or
(b) (i) Draw the multiple-level two input NAND circuit for the following expression : $F=\left(A B^{\prime}+C D^{\prime}\right) E+B C(A+B)$.
(ii) Draw and explain Tri-state TTL inverter circuit diagram and explain its operation.
12. (a) (i) Design a 4-bit decimal adder using 4-bit binary adders.
(ii) Implement the following Boolean functions using Multiplexers $F(A, B, C, D)=\Sigma m(0,1,3,4,8,9,15)$.

Or
(b) (i) Design a 4-bit magnitude comparator with three outputs : A $>\mathrm{B}$, $\mathrm{A}=\mathrm{B}$ and $\mathrm{A}<\mathrm{B}$.
(ii) Construct a 4-bit even parity generator circuit using gates.
13. (a) (i) Design a 3-bit synchronous counter using JK flip-flops.
(ii) Explain the differences between a state table, a characteristic table and an excitation table.

Or
(b) Design the sequential circuit specified by the following state diagram using T flip-flops. Check whether your design is self-correctable.

14. (a) (i) Write short notes on EAPROM and static RAM cell using MOSFET.
(ii) Using eight 64×8 ROM chips with an enable input and a decoder, construct a 512×8 ROM.

Or

(b) (i) Use PLA with 3 inputs, 4 AND terms and two outputs to implement the following two Boolean functions.
$F 1(A, B, C)=\Sigma m(3,5,6,7)$ and $F 2(A, B, C)=\Sigma m(1,2,3,4)$
(ii) Compare and contrast PLA and PAL.
15. (a) (i) What is a hazard in an asynchronous sequential circuits? Define static hazard, dynamic hazard and essential hazard.
(ii) Write and verify the HDL structural description of the four-bit register with parallel load. Use a 2×1 multiplexer for the flip-flop inputs. Include an asynchronous clear input.

Or

(b) Design an asynchronous sequential circuit with inputs A and B and an output Y. Initially and at any time if both the inputs are 0 , the output, Y is equal to 0 . When A or B becomes $1, \mathrm{Y}$ becomes 1 . When the other input also becomes $1, \mathrm{Y}$ becomes 0 . The output stays at 0 until circuit goes back to initial state.

