ANNA UNIVERSITY COIMBATORE B.E. / B.TECH. DEGREE EXAMINATIONS : DECEMBER 2009 REGULATIONS - 2007

FOURTH SEMESTER - ELECTRICAL AND ELECTRONICS ENGINEERING 070290005 - DIGITAL ELECTRONICS

TIME : 3 Hours

Max.Marks: 100

PART - A

 $(20 \times 2 = 40 \text{ MARKS})$

ANSWER ALL QUESTIONS

- 1. Find the excess-3 code and its 2's complement for the decimal number 596.
- 2. What bit must be complemented to change an ASCII letter from uppercase to lowercase and lower case to upper case?
- Simplify the following Boolean expression to a minimum number of literals: (X+Y)(X+Y)
- State the rules in Boolean algebra.
- 5. Why digital circuits are more frequently constructed with NAND or NOR gates than with AND and OR gates?
- 6. Design an EX-OR gate using only NAND gate.
- Differentiate between decoder and demultiplexer.
- Draw the circuit of a half adder-subtractor
- 9. What is race around condition? How is it avoided?
- Distinguish between a combinational logic circuit and sequential logic circuit.
- 11. Draw the complete timing diagram for the five-stage synchronous binary counter.
- 12. If the input frequency of a T-Flipflop is 1200kHz, what will be the output frequency? Justify your answer.

- 13. What are the steps for the analysis and design of asynchronous sequential circuits?
- 14. Define a fundamental mode asynchronous sequential circuit.
- 15. Compare and contrast the logic families: TTL and CMOS
- 16. An asynchronous sequential circuit is described by the given excitation and output function: Y≈X₁X₂+(X₁+X₂)Y and Z=Y. Draw the logic diagram of the circuit.
- 17. What are the various classifications of semiconductor memories?
- 18. Define a 'memory location', 'a cell' and 'volatile memory'.
- List the various advantages and commercially available programmable Logic Arrays (PLAs).
- 20. "PALs can have flip flops at the output" Justify the statement.

PART - B

 $(5 \times 12 = 60 \text{ MARKS})$

ANSWER ANY FIVE QUESTIONS

21. a) Write notes on error detecting and correcting codes

(6)

(6)

- b) Reduce the following function using Karnaugh map technique $F(W,X,Y,Z) = \sum m(0,7,8,9,10,12) + \sum d(2,5,13)$
- 22. a) Simplify the following Boolean function by using Quine Mccluskey method. (8) $F(A,B,C,D)=\Sigma m(0,2,3,6,7,8,10,12,13)$

2

b) State and Prove Demorgan's theorem

2	23.	a)	Draw and explain the circuit for 3-to-8 decoder and explain.	(7)
		b)	Implement the following Boolean function using 4:1 MUX.	(5)
14	24.	a)	Design a Full Adder circuit and Gray code converter.	(8)
		b)	Design a full subtractor circuit using demulitplexer.	(4)
14	25.	a)	Draw and explain the working of RS-Flipflop and clocked JK - Flipflop.	(8)
		b)	Draw the state diagram and characteristic equation of T-Flipflop.	(4)
14	26.	a)	Draw and explain the working of 4-bit up/ down synchronous counter.	(6)
		b)	Design a divide-by-5 ripple counter using JK-Flipflops.	(6)
2	27.	a)	Design an asynchronous sequential circuit that has two inputs X_2 and X_1 and one output Z. When X_1 =0, the output Z is 0. The first change in X_2 that occurs while X_1 is 1 will cause output Z to be 1. The output Z will remain 1 until X_1 returns to 0.	(8)
		b)	Write notes on ECL logic families	(4)
2	28.	a)	Discuss on the concept of working and applications of following memories: i) ROM ii)EPROM	(6)

 b) Describe the concept, working and applications of programmable array logic (6) and FPGA.

3