

Question Paper Code : 51444

B.E. /B. Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Third Semester

Electronics and Communication Engineering

EC 2203/EC 34/080290010/10144 EC 304 - DIGITAL ELECTRONICS

(Regulations 2008/2010)

(Common to PTEC 2203 – Digital Electronics for B.E. (Part-Time) Third Semester – Electronics and Communication Engineering Regulations 2009)

Time : Three Hours

Maximum: 100 Marks

Answer ALL questions. PART – A $(10 \times 2 = 20 \text{ Marks})$

1. Simplify f(x, y) = x'y + xy + xy'.

2. Implement EXOR function using NAND gates only.

Design a Half Subtractor.

3.

4. What is a parity bit ? Give the odd parity and even parity bits for the data 10.

5. State the difference between edge triggering and level triggering.

6. Give one application of a ring counter.

7. What is an EEPROM ?

8. State the difference between PAL and PLA.

9. What is a pulse mode asynchronous sequential circuit?

10. What are the parts of a module in verilog?

1

	1		$PART - B (5 \times 16 = 80 \text{ Marks})$	in the second second
11.	(a)	(i)	State and prove consensus theorem.	(6)
		(ii)	Minimize the following function using Karnaugh Map :	(10)
			$f(A, B, C, D, E) = \Sigma m(0, 2, 5, 6, 8, 11, 12, 13, 16, 18, 20, 28, 30, 31)$	
			OR	
	(b)	(i)	State and prove De Morgan's theorem.	(6)
		(ii)	Minimize the following function using Quine Mc Cluskey Method.	(10)
			$f(A, B, C, D, E) = \Sigma m (0, 1, 3, 5, 6, 7, 9, 10, 12, 13, 17, 19, 20, 25, 26, 29, 30)$	
			L'AUVEL CERTINITATEL SE SE DIGITAL ELECTRONI	
12.	(a)	(i)	Design and explain the operation of a Carry Look-ahead adder.	(8)
		(ii)	Design a 3 × 3 Binary (Array) Multiplier.	(8)
	See. 2		OR	
•	(b)	(i)	Explain the operation of a 8×1 Multiplexer and Implement the following	
			function using a suitable Multiplexer	(8)
		1	$F(A, B, C, D) = \Sigma m (0, 1, 3, 5, 6, 7, 8, 9, 11, 13, 14)$	
		(ii)	Design a magnitude comparator to compare two 3-bit numbers :	8
			$A = A_2 A_1 A_0 \text{ and } B = B_2 B_1 B_0$	
13.	(a)	With	logic diagram, characteristic table and characteristic equation explain the	
		opera	ation of a	
		(i)	D Flip-Flop	(5)
		(ii)	T Flip-Flop	(5)
		(iii)	JK Flip-Flop	(6)
			OR ALL THE LOT DE METHOD STUDIES	
	(b)	(i)	Design a 3-bit synchronous up/down Modulo 5 counter.	(8)
		(ii)	With neat sketch, explain the operation of a 3-bit universal shift register.	(8)

14.	(a)) With timing waveforms, explain the memory read/write operation. (8	5)
		i) What is memory expansion ? Explain. (8	\$)
		OR	
	(b)) Design a 3×8 decoder and Implement it using a suitable PLA. (8)	;)
		 Design a 3-bit majority logic circuit and Implement it using a suitable PAL. (8) 	5)
15.	(a)	esign a sequence detector to detect the sequence 1010. Use the Algorithmic	
		tate Machine (ASM) Chart for the design. (16)
		OR	
	(b)) What is an incompletely specified state machine ? Explain. (8	\$)
		i) Write the verilog code to realize a Full Adder using structural Modelling	
10.		(Module instantiation). (8	3)