ANNA UNIVERSITY COIMBATORE B.E. / B.TECH. DEGREE EXAMINATIONS : SEPTEMBER 2009		16	What is a flow table?
		17	How is memory size specified?
	REGULATIONS - 2007	18	Give the classification of memories based on the principle of operation
	THIRD SEMESTER : ELECTRONICS & COMMUNICATION ENGG.	10.	Compare PROM and PLA
070290018 - DIGITAL ELECTRONICS		19.	Compare PROM and PLA.
TIME : 3 Hours Max.Marks : 100		20.	what range of nex address values are used in 64K memory?
	PART - A		PART – B (5 x 12 = 60 MARKS)
	(20 x 2 = 40 MARKS)		ANSWER ANY FIVE QUESTIONS
	ANSWER ALL QUESTIONS	21.	Using K map method simplify the Boolean function $Y = \Sigma m(0,2,3,6,7) +$
1.	Convert (0.513) 10 to octal.		Σd(8,10,11,15) and obtain (i)SOP and (ii)POS expressions.
2.	Compare 1's complement and 2's complement.		Also implement them using universal gates.
3.	State and prove absorption theorem.		A
4.	Define prime implicant.	22.	Find the minimal sum of products for the Boolean expression
5.	Realize the function Y=A+BCD' using NAND gates.		F=Σ(1,2,3,7,8,9,10,11,14,15) using QuineMcCluskey method.
6.	What is a tristate gate?	23.	Explain in detail the working principle of Fast Adder.
7.	Give the design procedure for combinational circuits.		
8.	What does excitation table of a flip-flop mean?	24.	Implement the given Boolean function using multiplexer.
9.	Differentiate between synchronous and asynchronous counters?		F (A, B, C, D) = Σ (1,3,4,11,12,13,14,15)
10.	What is Mealy model?	05	
11.	Draw the state diagram of a 3 bit counter?	25.	Draw and explain the working of a universal shift register.
12.	What is a shift register?	26.	Design a mod 3 synchronous counter using JK flipflop.
13.	Can hazard occur in a clocked sequential circuit?		
14.	What is meant by a race condition in an asynchronous sequential circuit?	27.	State with a neat example the method for the minimization of primitive flow
15.	Determine whether hazard exists in the given Karnaugh map.		table.
	× 0 1	28.	Implement the following two Boolean functions with a PLA.
	(A) B		F1 (A, B, C) = Σ (2,4,5,7)
			F2 (A, B, C) = Σ (0,1,2,4,6)