

	Reg. No.:												
--	-----------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 73443

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2017.

Third Semester

Electronics and Communication Engineering

EC 2204/EC 35/EC 1202 A/080290015/10144 EC 305 — SIGNALS AND SYSTEMS

(Common to Biomedical Engineering)

(Regulations 2008/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What are singularity functions?
- 2. What is an LTI system?
- 3. State Dirichlet conditions.
- 4. Define region of convergence of Laplace transform for a causal signal.
- 5. Define state variable and state equations.
- 6. State the condition for a continuous time system to be stable and causal.
- 7. What is aliasing?
- 8. Give the transform pair equations of DTFT.
- 9. Give the Nth order linear constant coefficient difference equation of discrete system.
- 10. Find the stability of the system whose impulse response is $h(n) = 2^n u(n)$.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) How are signals classified? Explain with example. (8)
 - (ii) Determine fundamental period of the signal $x(t) = 2\cos(10t+1) \sin(4t-1)$. (4)
 - (iii) Determine whether the signal $x(t) = \cos^2 w_o t$ is energy signal or power signal. And calculate their energy and power. (4)

- (b) (i) Check whether the system y(n) = nx(n) is $(5 \times 2 = 10)$
 - (1) static or dynamic
 - (2) linear or nonlinear
 - (3) shift invariant or shift variant
 - (4) causal or noncausal
 - (5) stable or unstable.
 - (ii) Sketch the signals
 - (1) u[n-2]-u[n-5]
 - (2) $x[n] = \{1, 2, 6, 4, 8, 10\}$ \uparrow sketch x[2n] (6)
- 12. (a) (i) Find the trigonometric Fourier series of the waveform shown in Fig.12 (a) (i). (8)

Fig. 12 (a) (i)

(ii) Find the Fourier transform of $f(t) = t \cos at$.

(8)

Or

(b) (i) Find the Laplace transform of the waveform shown in Fig.12 (b)(i)

- (ii) Find the inverse Laplace transform of $F(s) = \frac{s-2}{s(s+1)^3}$. (10)
- 13. (a) (i) Derive an expression for convolution integral. (8)
 - (ii) Determine the frequency response and impulse response of the system having following differential equation.

$$\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = 2\frac{dx(t)}{dt} + 4x(t).$$
 (8)

Or

2

	(0)	(1)	Determine 11(3) for the following differential equation
			$\frac{d^2y(t)}{dt^2} - \frac{dy(t)}{dt} - 2y(t) = x(t).$
			Also determine $h(t)$ for each of the following cases: (1) The system is stable
			(2) The system is causal
			(3) The system is neither stable nor causal. (10)
		(ii)	Construct the state variable model for the transfer function $Y(s)$ $S+3$
			$T(s) = \frac{Y(s)}{R(s)} = \frac{s+3}{s^3 + 5s^2 + 8s + 3}.$ (6)
4.	(a)	(i) ·	State and prove sampling theorem. (8)
		(ii)	For the given signal $x(t) = \cos(200\pi t + \theta)$
			(1) If $x(t)$ is sampled at 250 Hz, 500 Hz and 100 Hz. At which
			frequency does aliasing phenomena take place?
			(2) What is the discrete time signal $x_d(n)$ if sampling frequency is
			100 Hz? (4)
		(iii)	State any four properties of DTFT. (4) Or
	(b)	(i)	Find the z-transform of $x(n) = \cos w_0 n$ for $n \ge 0$. (8)
		(ii)	Find the inverse z-transform of $X(Z) = \frac{1}{(z-0.25)(z-0.5)}$;
			$ ROC z > 0.5 \tag{8}$
5.	(a)	(i)	A discrete time causal system has a transfer function
			$H(Z) = \frac{1 - z^{-1}}{1 - 0.2z^{-1} - 0.15z^{-2}}.$
			(1) Determine the difference equation of the system
			(2) Show pole zero diagram
			(3) Find impulse response of the system. (10)
		(ii)	Compute $y(n) = x(n) * h(n)$, where
			$x(n) = \begin{cases} 1, & 3 \le n \le 8 \\ 0, & \text{otherwise} \end{cases}$
			$h(n) = \begin{cases} 1, & 4 \le n \le 15 \\ 0, & \text{otherwise} \end{cases} $ (6)
			0, otherwise
			Or
	(b)	(i)	Draw direct form, cascade form and parallel form representations of
			the second order system function $H(z) = \frac{1}{(1+0.5z^{-1})(1-0.25z^{-1})}$. (8)
		(ii)	Determine the system function for the causal LTI system with
			difference equation $y(n) - \frac{1}{2}y(n-1) + \frac{1}{4}y(n-2) = x(n)$. Also
			$1 \rightarrow \cdots \rightarrow (n) : f_{n}(n) \qquad (1)^{n} \qquad (2)$
			determine $y(n)$ if $x(n) = \left(\frac{1}{2}\right)^n u(n)$. (8)