50435

L-

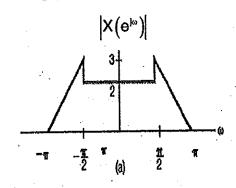
- 15. a) i) Obtain the parallel realization of the system given by y(n) 3y(n-1) + 2y(n-2) = x(n). (6)
 - ii) Determine the direct form II structure for the system given by difference equation

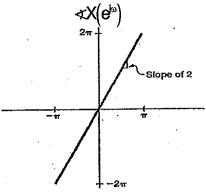
$$y(n) = \left(\frac{1}{2}\right)y(n-1) - \left(\frac{1}{4}\right)y(n-2) + x(n) + x(n-1).$$
 (7)

b) Using the properties of inverse Z-transform solve:

(5+5+3)

- i) $X(z) = \log(1 + az^{-1}); |z| > |a| \text{ and } X(z) = \frac{az^{-1}}{(1 az^{-1})^2}; |z| > |a|$
- ii) Check whether the system function is causal or not


H(z) =
$$\frac{1}{1 - (1/2)z^{-1}} + \frac{1}{1 - 2z^{-1}}$$
; $|z| > 2$


iii) Consider a system with impulse response $H(s) = \frac{e^s}{S+1}$; $Re\{s\} > -1$. Check whether the system function is causal or not .

$$PART - C$$

 $(1\times15=15 \text{ Marks})$

16. a) i) Consider the sequence x[n] whose Fourier transform $X(e^{i\omega})$ is depicted for $-\pi \le \omega \le \pi$ in the figure below. Determine whether or not, in the time domain, x[n] is periodic, real, even, and/or of finite energy. (6)

- ii) What is the transfer function and the impulse response of low pass RC circuit? (5)
- iii) Find the necessary and sufficient condition on the impulse response h[n] such that for any input x[n],

$$\max\{|\mathbf{x}[\mathbf{n}]|\} \ge \max\{|\mathbf{y}[\mathbf{n}]|\},$$
 where $\mathbf{y}[\mathbf{n}] = \mathbf{x}[\mathbf{n}]^* h[\mathbf{n}].$ (4)

(OR)

b) Analyze on recursive and non-recursive systems with an example. (15)

Reg. No.:									
-	 	I	i i	t	l	t		1	

03/11

Question Paper Code: 50435

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017 Third Semester

Electronics and Communication Engineering EC6303 – SIGNALS AND SYSTEMS

(Common to : Medical Electronics , Biomedical Engineering) (Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

PART - A

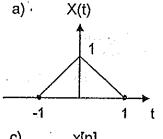
(10x2=20 Marks)

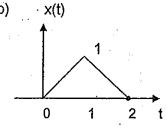
1. Determine if the signal x[n] given below is periodic. If yes, give its fundamental period. If not, state why it is aperiodic.

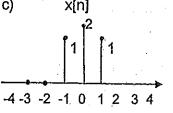
$$X[n] = \sin\left(\frac{6\pi}{7}n + 1\right)$$

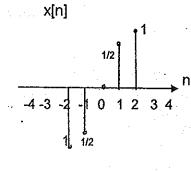
- 2. Check whether the following system is Time Invariant/Time variant and also causal/non causal: $Y(t) = x\left(\frac{t}{3}\right)$.
- 3. Find whether the following system with impulse response h(t) are stable or not. $h(t) = t e^{-t} u(t)$.
- 4. Find the Fourier transform of $x(t) = e^{-at} u(t)$.
- 5. Will there be two different signals having same Laplace transform? Give an example. How do you differentiate these two signals?
- 6. Consider an LTI system with transfer function H(s) is given by H(s) = $\frac{1}{(s+1)(s+3)}$ Re(s)>3; determine h(t).
- 7. List the ROC properties of Laplace transform.
- 8. Find the Z transform of a sequence $x[n] = \cos(n \omega T) u[n]$.
- 9. Write the condition for stability of a DT-LTI system with respect to the position of poles.
- 10. Realize the difference equation y[n] = x[n] 3x[n-1] in direct form I.

(7)


(6)

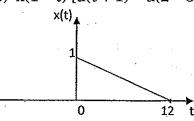

PART - B


 $(5\times13=65 \text{ Marks})$

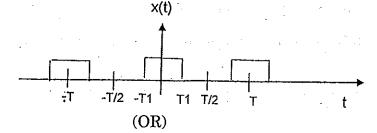

- 11. a) Find the whether the signal is an energy signal or power signal.
 - i) $x(t) = e^{-2t} u(t)$.

- **(5)**
- ii) Draw the waveform for the signal x(t) = r(t) 2r(t-1) + r(t-2).
- (4)**(4)**
- iii) For the given signal determine whether it is even, odd, or neither.

(OR)


- b) Determine whether the following system is Linear and Causal.
 - i) y[n] = x[n], x[n-1] and $y[n] = \left(\frac{1}{3}\right)$ [x(n-1) + x(n) + x(n+1)].(5)
 - ii) For x(t) indicate in figure sketch the following:

(4+4)


(7)

(6)

- a) x(1-t)[u(t+1)-u(t-2)]
- b) x(1-t)[u(t+1)-u(2-3t)].

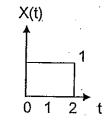
- 12. a) i) Find the Fourier transform of a rectangular pulse with width T and amplitude A.
 - ii) Determine the Fourier series coefficients of the following signal.

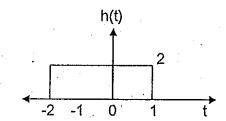
is given by $x(t) = e^{-a|t|}$, a > 0. Also draw its amplitude and phase spectra. **(7)**

b) i) Determine the Fourier transform for double exponential pulse whose function

ii) Obtain the inverse Laplace transform of the function **(6)**

$$X(s) = \frac{1}{s^2 + 3s + 2}$$
, ROC: $-2 < \text{Re}\{s\} < -1$.


(OR)


- 13. a) i) Using Laplace transform of x(t). Give the pole-zero plot and find ROC of the signal x(t). $x(t) = e^{-b|t|}$ for both b>0 and b<0. **(6)**
 - ii) Find the condition for which Fourier transform exists for x(t). Find the Laplace transform of x(t) and its ROC. $x(t) = e^{-at} u(-t)$. **(7)**

b) i) Using graphical method, find the output sequence y[n] of the LTI system whose response h[n] is given and input x[n] is given as follows.

$$x[n] = \{0.5, 2\}; h[n] = \{1, 1, 1\}.$$
 (6)

ii) Find the response y(t) of an LTI system whose x(t) and h(t) are shown in fig. (Using convolution integral). **(7)**

- 14. a) i) Find the Z transform and sketch the ROC of the following sequence $x[n] = 2^n u[n] + 3^n u(-n-1).$
 - ii) Consider an analog signal $x(t) = 5 \cos 200 \pi t$.
 - a) Determine the minimum sampling rate to avoid aliasing.
 - b) If sampling rate Fs = 400 Hz. What is the DT signal after sampling?

- b) i) Determine unit step response of the LTI system defined by $d^2y/dt^2 + 5dy/dt + 6y(t) = dx/dt + x(t)$. (7)
 - ii) Find the Inverse z-transform using partial fraction method.

$$X(z) = \frac{3 - (5/6)z^{-1}}{(1 - (1/4)z^{-1})(1 - (1/3)z^{-1})} ; |z| > 1/2$$