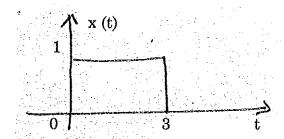
Reg. No.:					
	 	i	1 1	 l] i	

Question Paper Code: 40953

B.E./B.Tech. DEGREE EXAMINATION, APRIL /MAY 2018
Third Semester
Electronics and Communication Engineering
EC 6303 – SIGNALS AND SYSTEMS
(Common to Biomedical Engineering/Medical Electronics)
(Regulations 2013)

Time: Three Hours


Maximum: 100 Marks

Answer ALL questions

PART - A

 $(10\times2=20 \text{ Marks})$

1. Represent the following signal in terms of the unit step function.

- 2. What is a random signal? Give an example.
- 3. Find the Fourier series representation of the signal $x(t) = \cos \frac{2\pi}{3}t$.
- 4. Give Parseval's relation for continuous time Fourier transform.
- 5. Given the input x (t) = u (t) and h (t) = δ (t 1). Find the response y (t).
- 6. Given $X(s) = \frac{3}{s+2}$, ROC: Re $\{s\} > -2$. Find x (t).
- 7. Find the Nyquist rate for the signal x (t) = $1 + \cos 10 \pi t$, in Hz.

- 8. Find the Inverse DTFT of X ($e^{j\omega}$) = 2 $e^{j\omega} + 1 2e^{-2j\omega}$.
- 9. Draw the block diagram representation of the system given its input output relationship

$$y[n] = \sum_{k=0}^{4} h(k) x(n-k).$$

10. Convolve the following signals

$$x [n] = \{1, 2, -2\}$$
 and $h [n] = \{1, 2, 2\}.$

PART - B

(5×13=65 Marks)

- 11. a) i) How the unit impulse function δ (t), unit step function u (t) and ramp function r (t) can be related? Also give the Mathematical representation and graphical representation of the above three functions. (6)
 - ii) Determine whether the following signals is periodic. If a signal is periodic, determine its fundamental period.

a)
$$x(t) = \cos\frac{\pi}{3}t + \sin\frac{\pi}{4}t$$
 (4)

b)
$$x[n] = \cos \frac{n}{4}$$
 (3)

(OR)

- b) Determine whether the system y[n] = 2x(n-2) is memoryless, causal, linear, time invariant, invertible and stable. Justify your answers.
- 12. a) Find the Fourier series representation for the signal $x(t) = 2 + \cos 4t + \sin 6t$ and plot its magnitude and phase spectrum. (OR)
 - b) State and prove any three properties of continuous Time Fourier Transform.
- 13. a) Given the differential equation representation of a continuous time system.

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{y}(t) + 2\mathbf{y}(t) = \mathbf{x}(t)$$

Find the response y(t) for the input x (t) = e^{-3t} u(t) using Laplace transform. (OR)

b) A continuous time LTI system is represented by the following differential equation.

$$\frac{d^{2}}{dt^{2}}y(t) + 3\frac{d}{dt}y(t) + 2y(t) = 2x(t)$$

Determine the impulse response of the system using Fourier transform.

14. a) Find the Z- transform of the sequence $x[n] = a^n u[n] + b^n u[-n-1]$. Considering the two conditions a > b and a < b.

(OR)

- b) If $X(e^{j\omega})$ is the DTFT of x[n]. Find the DTFT of $(n-1)^2 x[n]$ in terms of $X(e^{j\omega})$ using DTFT properties.
- 15. a) Convolve the following sequences x [n] = aⁿ u [n], a < 1
 h [n] = u [n]

(OR)

b) The system function H(z) is given by H(z) = $\frac{z^2}{(z - \frac{1}{3})(z - \frac{1}{2})}$ ROC: $|z| > \frac{1}{2}$.

Determine the step response of the system.

PART – C (1×15=15 Marks)

16. a) State and explain sampling theorem with necessary equations and illustrations.

(OR)

b) A discrete time system is both linear and time invariant. The output produced by this system for an impulse input is {1, 2, 3}.

Find the output of this for the following inputs and justify your answer:

i)
$$\delta [n-2]$$
 (5)

ii)
$$\delta[n] - 2\delta[n-1]$$
 (5)

iii) {1, 2, 3}.