Reg. No.

Question Paper Code : 51446

B.E. /B. Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Third Semester

Electronics and Communication Engineering EC 2205/EC 36/080290011 – ELECTRONIC CIRCUITS – I (Common to Medical Electronics Engineering) (Regulations 2008)

Time : Three Hours

Maximum : 100 Marks

Answer ALL questions. PART – A $(10 \times 2 = 20 \text{ Marks})$

- 1. List out the advantages of self bias over other BJT biasing methods.
- 2. Draw the DC load line of the circuit shown in Figure-2.

Figure-2

- 3. Define Miller's theorem.
- 4. Define CMRR. How to improve CMRR?
- 5. Differentiate between Class A and Class S amplifier.
- 6. Define cross-over distortion. How to overcome cross-over distortion ?
- 7. Determine f_{3B} of the short-circuit current gain of BJT, rbe = 2.6k Ω , Cbe = 2pF and Cb c= 0.1pF
- 8. Differentiate between half-wave-rectifier and full-wave-rectifier.
- 9. Define gain-bandwidth product.
- 10. Compare between LC and π filter.

$PART - B (5 \times 16 = 80 Marks)$

11. (a)

(i) Determine the quiescent current and voltage values in a p-channel JFET circuit. (6)

Figure - 11(a) (i)

(ii) For the MOSFET transistor in the circuit in Figure 11(a) (ii), the parameters are Vtn = 2V, kn' = $60\mu A/V^2$ and W/L=60. (1) Determine V_{GS} , I_D and V_{DS} . (2) Draw the DC load line. (10)

- (b) (i) Derive an expression for the stability factor of a self-bias circuit.
 - (ii) The circuit in Figure 11(b) (ii), let $\beta = 100$ (1) Find V_{TH} and R_{TH} for the base circuit (2) Determine I_{CO} and V_{CEO} (3) Draw the DC load line. (10)

Figure 11(b) (ii)

(6)

For each transistor in the Darlington circuit shown in Figure 12(a) (i) has 12. (a) (i) the parameters of $\beta = 100$, $V_A = \infty$. Determine its overall voltage gain, input impedance and output impedance.

Figure -12(a) (i)

(ii) Determine the small signal voltage gain, input impedance and output impedance of common source FET amplifier.

OR

For the circuit in Figure 12(b), the parameters are $R_B = 100 \text{ k}\Omega$, $R_F = 10 \text{ k}\Omega$, (b) $R_{C} = 10 \text{ k}\Omega$, $V_{CC} = V_{FF} = 10 \text{ V}$, $R_{L} = 1 \text{ k}\Omega$, $R_{S} = 1 \text{ k}\Omega$, $\beta = 125 \text{ and } V_{A} = \infty$. (1) Determine the small signal voltage gain (2) Determine small signal current gain (3) Determine the input resistance, fin (4) Determine the output resistance, (16)Ro.

Figure -12(b)

Discuss the frequency response of multistage amplifier in detail. (a) (i) (8)

(ii) Determine the midband gain, upper Cutoff frequency of a Common-Source amplifier fed with the signal having internal resistance Rsig = 100 k Ω (vide Figure 13(a) (ii)). The amplifier has R_G = 4.7 M Ω ; $R_D = R_L = 15 \text{ k}\Omega$, gm = 1m A/V, ro = 150 Ω , Cgs = 1pF and Cgd = 0.4 pF. (8)

> RG **Figure – 13(a) (ii)** OR

13.

51446

(8)

(8)

(b) Determine the mid-band gain and bandwidth of a CE amplifier (vide Figure 13(b)). Assume lower cutoff frequency is 100 Hz, (ii) Find C_{C1}, C_{C2} and C_E. Let

 $\beta = 100$, cbe = 4pF, cbc=0.2pF and V_A = ∞ .

Figure – 13(b)

14.	(a)	(i)	Explain the second-order harmonic distortion in detail.	(8)
		(ii)	Explain the Class D amplifier in detail.	(8)
(01)			guin (3) Determine the reput resistance. If (4) 190 mine the output	
	(b)	(i)	Briefly discuss the complementary symmetry (Class-B) push-pu amplifier.	ıll (8)
		(ii)	Discuss the thermal stability and heat sinks in detail.	(8)
15. (8) (1)	(a)	Expl	ain the Switched-Mode power supply design in detail.	(16)
	(b)	(i)	Explain the AC power control using SCR in detail.	(8)
		(ii)	Explain the performances measures of rectifiers in detail.	(8)

51446

(16)