K 3284

B.E./B. Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2007.

Third Semester

(Regulation 2004)

Electronics and Communication Engineering

EC 1203 — ELECTRONIC CIRCUITS — I

EC 2205

(Common to B.E. (Part-Time) Second Semester, Regulation 2005)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A - (10 x 2 20 marks)

- 1. Why capacitive coupling used to connect a signal source to an amplifier?
- 2. What is the condition for the mal stability?
- 3. Define CMRR,
- 4. State Miller's theorem.
- 5. Draw general frequency response curve of an amplifier.
- 6. Define rise time.
- 7. What is called as crossover distortion and how to minimize this distortion?
- 8. Compare the efficiency of class A, B, C, AD.
- 9. Define Transformer Utilization Factor.
- 10. Compare the performance of half wave rectifier and full wave rectifier.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) (i) The amplifier shown in figure utilizes an n - channel FET for which, I_D = 0.8 mA, V_p = -2.0 V and I_{DSS} = 1.65 mA. Assume that $r_d > R_d$. Find (1) V_{GS} (2) g_m (3) R_S .

(ii) How is a JFET used as a voltage variable resistance? Explain. (8)

Or 🤲

(b) (i) For the given circuit calculate V_{CE} and Ic, where $\beta = 100$ for the silicon transistor. (8)

(ii) Why biasing is necessary in BJT amplifier and Explain the concept of DC load line with neat diagram. (8)

12. (a) Consider a single stage common emitter amplifier with Rs = 1 K Ω , R₁ = 50 K Ω , R₂ = 2 K Ω , Rc = 1 K Ω , R_L = 1.2 K Ω , h_{fe} = 50, h_{ie} = 1.1 K Ω , hoe = 25 μ A/V and h_{re} = 2.5 × 10⁻⁴. Find A_L Av, Zi, A_{LS}, A_{VS} and Y_O. (16)

- (b) (i) Explain the emitter coupled difference amplifies with neat diagram.
 (10)
 - (ii) Write the improving methods of CMRR. (6)
- 13. (a) (i) Sketch the small signal high frequency circuit of a common source amplifier and derive the expression for a voltage gain. (12)
 - (ii) What specific capacitance has the greatest effect on the high frequency response of a cascade of FET amplifier? Explain. (4)

Or

- (b) (i) With the next sketch explain hybrid pi (π) Common Emitter transistor model. (8)
 - (ii) Der the expression for transistor conductance (g_m) for hybrid π
 (iii) Der the expression for transistor conductance (g_m) for hybrid π
 (8)
- 14. (a) (i) Explain class A RC coupled power amplifier. (10)
 - (ii) Explain how the characteristics are modified with transformer coupling. (6)

Or

- (b) A class B complementary A.F power amplifier shown in figure, Calculate
 - (i) Maximum AC power which can be developed
 - (ii) Collector dissipation while developing Maximum AC power

- (iii) Efficiency
- (iv) Maximum power dissipation per transistor
- (v) Efficiency under maximum power dissipation condition.

- 15. (a) (i) With neat sketch explain the Switched Mode Power Supplies. (8)
 - (ii) A HWR circuit is supplies from a 30 V, 50 Hz supply with a transformer having step down factor of 3:1 to a resistive load of 10 K Ω . The diode forward resistance is 75 Ω , while transistor series resistance is 10 Ω . Calculate maximum, average and RMS value of current.

(b) (i) Draw the ciscult tragram of a FWR with capacitor input filter. With suitable waveform explain its working. Derive the expression for ripple factor. (10)

(ii) Design and draw a zener regulator circuit to meet the following specification. (6)

Load voltage = 8 V

Input voltage = 30 V

Load current = 0 - 50 mA

Izmin = 5 mA

Pz = 1 Watt.