Reg. No.

Question Paper Code : 57283

B.E/B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Third Semester

Electronics and Communication Engineering EC 6304 – ELECTRONIC CIRCUITS – I

(Regulations 2013)

Time : Three Hours

Maximum : 100 Marks

Answer ALL questions. PART – A $(10 \times 2 = 20 \text{ Marks})$

1. What is an operating point?

2. Give the methods of biasing a JFET.

3. What is the need of a load line?

4. Draw a cascade amplifier and its ac equivalent circuit.

5. What is body effect in MOSFET ? How does it change the small-signal equivalent circuit of the MOSFET ?

6. Give the general conditions under which common source amplifier would be used.

7. A bipolar transistor has parameter $\beta_0 = 150$, $C_{\pi} = 2$ pF, $C_{\mu} = 0.3$ pf and is biased at $I_{CO} = 0.5$ mA. Determine the beta cut off frequency.

8. Sketch the expanded hybrid π model of the BJT.

9. What is a current mirror circuit?

10. Sketch a MOSFET cascade current source and state its advantage.

1

$PART - B (5 \times 16 = 80 Marks)$

11. (a) Compare the various methods of biasing using BJT in terms of their stability factors. (16)

OR

- (b) With neat diagrams, explain two bias compensation techniques and state its advantages and disadvantages. (16)
- 12. (a) What are the changes in the a.c characteristics of a common emitter amplifier when an emitter resistor and an emitter bypass capacitor are incorporated in the design ? Explain with necessary equations. (16)

OR

(b) (i) Calculate the small signal voltage gain of an emitter follower circuit.

Given $\beta = 100$, $V_{BE(on)} = 0.7V$, $V_A = 80 V$, $I_{CQ} = 0.793 mA$, $V_{CEQ} = 3.4 V$. (8)

- (ii) Draw and explain the operation of a darlington amplifier.
- 13. (a) Design a JFET source follower circuit (Figure 13(a)) with a specified small signal voltage gain given $I_{DSS} = 12mA$, $V_p = -4V$, $\lambda = 0.01 V^{-1}$. Determine R_s and I_{DQ} such that the small signal voltage gain is at least $A_v = V_o/V_i = 0.90$. (16)

Figure 13(a)

OR

(8)

(b) Determine the small signal voltage gain of a common source circuit (Figure 13(b)) containing a source resistor. The transistor parameters are $V_{TN} = 0.8 \text{ V}$, Kn = 1 mA/V² and $\lambda = 0$. (16)

Figure 13(b)

14. (a) Determine the 3 dB frequencies and mid band gain of a cascade circuit. For the Figure 14(a) the parameters are V⁺ = 10 V, V = -10 V, R_s = 0.1 kΩ, R₁ = 42.5 kΩ, R₂ = 20.5 kΩ, R₃ = 28.3 kΩ, R_E = 5.4 kΩ, R_c = 5 kΩ, R_L = 10 kΩ, C_L = 0. The transistor parameters are $\beta = 150$, V_{BE(ON)} = 0.7 V, V_A = ∞, C_π = 35 pF and C_µ = 4 pF. (16)

Figure 14(a)

OR

3

- (b) The transistor in the figure. 14(b) has parameters $\beta = 125$, $V_{BE(ON)} = 0.7 \text{ V}$, $V_A = 200 \text{ V}$, $C_{\pi} = 24 \text{ pF}$ and $C_{\mu} = 3 \text{ pF}$.
 - (i) Calculate the miller capacitor
 - (ii) Determine the upper 3 dB frequency
 - (iii) Determine the small signal mid band voltage gain

Figure. 14(b)

15. (a) For the circuit shown in the figure. 15(a) Let V⁺ = 10 V, and V⁻ = 0 and the transistor parameters are V_{TN} = 2 V, ½ μ_n C_{ox} = 20 μA/V² and λ = 0. Design the circuit such that I_{ref} = 0.5 mA and I_o = 0.2 mA and M₂ remains biased in the saturation region for V_{DS2} ≥ 1 V. (16)

OR

(b) With the necessary diagram explain about CMOS differential amplifier and derive the CMRR. (16)

4

(16)