Reg. No. \square

Question Paper Code : 80335

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.

Third Semester
Electronics and Communication Engineering
EC 6304 - ELECTRONIC CIRCUITS - I
(Regulations 2013)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A $-(10 \times 2=20$ marks $)$

1. What is a Q point?
2. What is the impact of temperature on drain current of MOSFET?
3. What is an ac load line?
4. Draw the small-signal ac equivalent circuit of the BJT.
5. What is the impact of including a source resistor in the FET amplifier?
6. Why multi-stage amplifiers are required?
7. What is the reason for reduction in gain at lower and higher frequencies in case of amplifiers?
8. Determine the unity-gain bandwidth of a FET with parameters, $C g d=10 \mathrm{fF}$, $C g s=50 \mathrm{fF}$ and $g_{m}=1.2 \mathrm{~mA} / \mathrm{V}$.
9. Why active loads are not used with discrete circuits?
10. Define CMRR.

$$
\text { PART B }-(5 \times 13=65 \text { marks })
$$

11. (a) Analyze a BJT with a voltage divider bias circuit, and determine the change in the Q-point with a variation in β when the circuit contains an emitter resistor. Let the biasing resistors be $R_{B 1}=56 k \Omega, R_{B_{2}}=12.2 \mathrm{k} \Omega$, $\mathrm{R}_{\mathrm{C}}=2 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{E}}=0.4 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}(\mathrm{on})=0.7 \mathrm{~V}$, and $\beta=100$.
(b) Consider the circuit shown below with transistor parameters Idss $=12 \mathrm{~mA}$, $V_{P}=-4 \mathrm{~V}$, and $\lambda=0.008 \mathrm{~V}^{-1}$. Determine the small-signal voltage gain $\mathrm{A}_{\mathrm{v}}=\mathrm{vo} / \mathrm{vi}$.

12. (a) Analyze a basic common-base amplifier circuit and derive the expressions for its small-signal voltage gain, current gain, input impedance and output impedance.

Or
(b) With neat diagrams, explain the operation and advantages of Darlington pair circuit, Also analyze its small-signal voltage gain and input impedance.
13. (a) Determine the small-signal voltage gain of a multistage cascade circuit shown in the figure below. The transistor parameters are $\mathrm{K}_{\mathrm{n} 1}=0.5 \mathrm{~mA} / \mathrm{V}^{2}, \mathrm{~K}_{\mathrm{n} 2}=0.2 \mathrm{~mA} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{TN} 1}=\mathrm{V}_{\mathrm{TN} 2}=1.2 \mathrm{~V}$ and $\lambda_{1}=\lambda_{2}=0$. The quiescent drain currents are $I_{D 1}=0.2 \mathrm{~mA}$ and $\mathrm{I}_{\mathrm{D} 2}=0.5 \mathrm{~mA}$.

Or
(b) (i) Draw the circuit of a basic common source amplifier with voltage divider bias and derive the expressions for voltage gain, input impedance and output impedance using small-signal model.
(ii) Determine the voltage gain of the circuit, assuming the following parameters: $V_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{D}}=10 \mathrm{k} \Omega, R_{G 1}=140 \mathrm{k} \Omega, R_{\mathrm{G} 2}=60 \mathrm{k} \Omega$, and $\mathrm{R}_{\mathrm{Si}}=4 \mathrm{k} \Omega$. The transistor parameters are: $\mathrm{V}_{\mathrm{TN}}=0.4 \mathrm{~V}$, $\mathrm{K}_{\mathrm{n}}=0.5 \mathrm{~mA} / \mathrm{V}^{2}$, and $\lambda=0.02 \mathrm{~V}^{-1}$.
14. (a) Derive the expression for cut-off frequency of a BJT.

Or

(b) Construct the high frequency equivalent circuit of a MOSFET from its geometry and derive the expression for short circuit current gain in the common-source configuration.
15. (a) Draw and explain the operation of a simple MOSFET amplifier with active load and derive its voltage gain using small-signal equivalent circuit.

Or

(b) With necessary diagrams, explain the operation of a CMOS differential amplifier. Using small signal analysis, derive the expression for its voltage gain.

PART C $-(1 \times 15=15$ marks $)$
(Application/Design/Analysis/Evaluation/Creativity/Case study)
16. (a) Design the circuit given below such that $I_{D Q}=100 \mu A, V_{S D Q}=3 V$, and $V_{R S}=0.8 \mathrm{~V}$. Note that $V_{R S}$ is the voltage across the source resistor R_{S}. The value of the larger bias resistor, either R_{1} or R_{2} is to be $200 \mathrm{k} \Omega$. Transistor parameter values are $K p=100 \mu A / V^{2}$ and $V_{T P}=-0.4 V$. The conduction parameter, $K p$ may vary by ± 5 percent.

(b) Design the cascode circuit shown below to meet the following specifications: $\quad V_{C E 1}=V_{C E 2}=2.5 V, V_{R E}=0.7 V, I_{C 1} \cong I_{C 2} \cong 1 \mathrm{~mA}$, and $I_{R 1} \cong I_{R 2} \cong I_{R 3}=0.10 \mathrm{~mA}$.

