Reg. No. :

Question Paper Code : 10323

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2012.

Fourth Semester

Electrical and Electronics Engineering

EE 2255/131405/EE 46/EC 1261 A/10133 EE 406/080280029 – DIGITAL LOGIC CIRCUITS

(Regulation 2008)

Time : Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

1. Express the following switching circuit in binary logic notation.

- 2. What is priority encoder?
- 3. Give the characteristic equation and state diagram of JK flip-flop.
- 4. What is lockout? How it is avoided?
- 5. How does the operation of an asynchronous input differ from that of a synchronous input?
- 6. Define flow table in asynchronous sequential circuit.
- 7. What is a PLA?
- 8. List the configurable elements in the FPGA architecture.
- 9. What are the various modeling techniques in HDL?
- 10. Write HDL for half adder.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) (i) Implement the following Boolean function with NAND - NAND logic.

$$Y = AC + ABC + ABC + AB + D \tag{6}$$

(ii) Simplify and implement the following sop function using NOR gates.

$$f(A,B,C,D) = \sum m(0,1,4,5,10,11,14,15).$$
⁽¹⁰⁾

Or

- (b) (i) Implement the given function using multiplexer $F(x, y, z) = \Sigma(0, 2, 6, 7).$ (8)
 - (ii) Implement full subtractor using demultiplexer. (8)
- (a) (i) Realize SR flip-flop using NOR gates and explain its operation. (8)
 - (ii) Convert a SR flip-flop into JK flip-flop.

Or

(b) A sequential circuit with 2D FFs A and B and input X and output Y is specified by the following next state and output equations.

$$A(t+1) = AX + BX$$

B(t+1) = A'X

12.

Y = (A + B)X'

- (i) Draw the logic diagram of the circuit.
- (ii) Derive the state table.
- (iii) Derive the state diagram.
- 13. (a) (i) Design a pulse mode circuit with inputs x_1, x_2, x_3 and output Z as shown in figure 1.

(ii) The output should change from 0 to 1, only for input sequence $x_1 - x_2 - x_3$ occurs while z = 0. Also the output z should remain in 1 until x_2 occurs. Use SR flip-flops for the design. (16)

2

10323

(8)

(16)

- List and explain the steps used for analyzing an asynchronous (i) sequential circuit. (8)
 - Derive the flow table for the circuit given in the figure 2. (ii) (8)

14. (a) Write notes on ROM ar	d its types.
-------------------------------	--------------

Or

	(b)	(i)	A combinational logic circuit is defined by the following function.		
			$f_1(a,b,c) = \sum(0, 1, 6, 7), f_2(a, b, c) = \sum(2, 3, 5, 7)$		
			Implement the circuit with a PAL having three inputs, product terms and two outputs.	three (10)	
		(ii)	Describe the concept and working of FPGA.	(6)	
15.	(a)	Expl	lain RTL design using VHDL with the help of example.	(16)	
			Or		

Write the VHDL code for mod 6 counter. (b) (16)

(16)

3

(b)