\square

Question Paper Code : 57308

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Third Semester
Electrical and Electronics Engineering
EE 6301 - DIGITAL LOGIC CIRCUITS
(Common to Electronics and Instrumentation Engineering and Instrumentation and Control Engineering)
(Regulation 2013)

Time : Three Hours
Maximum : 100 Marks

Answer ALL questions.

PART-A ($10 \times 2=20$ Marks $)$

1. Convert the following binary code into a Gray Code :

$$
1010111000_{2}
$$

2. Define fan-in and fan-out.
3. Write the POS representation of the following SOP function :

$$
f(x, y, z)=\sum m(0,1,3,5,7)
$$

4. Design a half subtractor.
5. Give the characteristic equation and characteristic table of SR flip-flop.
6. State any two differences between Moore and Mealy state machines.
7. What are the two types of asynchronous sequential circuits ?
8. State the difference between PROM, PLA and PAL.
9. What is data flow modelling in VHDL? Give its basic mechanism.
10. Write the VHDL code to realize a 2×1 multiplexer.

PART - B ($5 \times 16=80$ Marks)

11. (a) (i) Convert 1010111011101100_{2} into its octal, decimal and hexadecimal equivalent. (6)
(ii) Deduce the odd parity hamming code for the data : 1010. Introduce an error in the LSB of the hamming code and deduce the steps to detect the error.(10)
OR(b) (i) With circuit schematic explain the operation of a two input TTL NANDgate.(8)
(ii) With circuit schematic and explain the operation and characteristics of a ECL gate.(8)
12. (a) (i) Simplify the following function using Karnaugh Map.
$\mathrm{f}(\mathrm{w}, x, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(0,1,3,9,10,12,13,14)+\sum \mathrm{d}(2,5,6,11)$(8)
(ii) Implement the following function using only NAND gates :$\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(0,2,4,6)$(8)
OR
(b) (i) Design a BCD to Excess-3 code converter. (8)
(ii) Design a full adder and implement it using suitable multiplexer.(8)
13. (a) (i) Explain the operation of a JK master slave flip flop.(8)
(ii) Design a MOD-5 counter using T Flip Flops.
OR(8)
(b) (i) Design a serial adder using Mealy state model.(8)
(ii) Explain the state minimization using partitioning procedure with a suitable example. (8)
14. (a) (i) What are Static-0 and Static-1 hazards ? Explain the removal of hazards using hazard covers in K-map.(8)
(ii) Explain cycles and races in asynchronous sequential circuits.(8)
OR
(b) (i) What are transition table and flow table ? Give suitable examples.(6)
(ii) Implement the following function using PLA and PAL:(10)$\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(0,1,3,5,7)$
15. (a) (i) Explain the various operators supported by VHDL.(8)
(ii) Write the VHDL code to realize a decade counter with behavioural modelling.
OR(8)
(b) (i) Explain functions and subprograms with suitable examples.(6)
(ii) Write the VHDL code to realize a 4-bit parallel binary adder withstructural modelling and write the test bench to verify its functionality.(10)
